Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(3x^{3}\right)^{1}\times \frac{1}{6x^{2}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
3^{1}\left(x^{3}\right)^{1}\times \frac{1}{6}\times \frac{1}{x^{2}}
Ikki yoki undan ko'p raqam koʻpaytmasini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring va ularning koʻpaytmasini chiqaring.
3^{1}\times \frac{1}{6}\left(x^{3}\right)^{1}\times \frac{1}{x^{2}}
Ko'paytirishning kommutativ xususiyatidan foydalanish.
3^{1}\times \frac{1}{6}x^{3}x^{2\left(-1\right)}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
3^{1}\times \frac{1}{6}x^{3}x^{-2}
2 ni -1 marotabaga ko'paytirish.
3^{1}\times \frac{1}{6}x^{3-2}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
3^{1}\times \frac{1}{6}x^{1}
3 va -2 belgilarini qo'shish.
3\times \frac{1}{6}x^{1}
3 ni 1 daraja ko'rsatgichiga oshirish.
\frac{1}{2}x^{1}
3 ni \frac{1}{6} marotabaga ko'paytirish.
\frac{1}{2}x
Har qanday t sharti uchun t^{1}=t.
\frac{3^{1}x^{3}}{6^{1}x^{2}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
\frac{3^{1}x^{3-2}}{6^{1}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{3^{1}x^{1}}{6^{1}}
3 dan 2 ni ayirish.
\frac{1}{2}x^{1}
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}x
Har qanday t sharti uchun t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{6}x^{3-2})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}x^{1})
Arifmetik hisobni amalga oshirish.
\frac{1}{2}x^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{1}{2}x^{0}
Arifmetik hisobni amalga oshirish.
\frac{1}{2}\times 1
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{1}{2}
Har qanday t sharti uchun t\times 1=t va 1t=t.