Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}-8x+4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
3x^{2}-4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
-4x ni olish uchun -8x va 4x ni birlashtirish.
3x^{2}-4x-2=5x^{2}-10x+\left(x-2\right)\times 8
5x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-4x-2=5x^{2}-10x+8x-16
x-2 ga 8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-4x-2=5x^{2}-2x-16
-2x ni olish uchun -10x va 8x ni birlashtirish.
3x^{2}-4x-2-5x^{2}=-2x-16
Ikkala tarafdan 5x^{2} ni ayirish.
-2x^{2}-4x-2=-2x-16
-2x^{2} ni olish uchun 3x^{2} va -5x^{2} ni birlashtirish.
-2x^{2}-4x-2+2x=-16
2x ni ikki tarafga qo’shing.
-2x^{2}-2x-2=-16
-2x ni olish uchun -4x va 2x ni birlashtirish.
-2x^{2}-2x-2+16=0
16 ni ikki tarafga qo’shing.
-2x^{2}-2x+14=0
14 olish uchun -2 va 16'ni qo'shing.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 14}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -2 ni b va 14 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 14}}{2\left(-2\right)}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+8\times 14}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4+112}}{2\left(-2\right)}
8 ni 14 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{116}}{2\left(-2\right)}
4 ni 112 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{29}}{2\left(-2\right)}
116 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{29}}{2\left(-2\right)}
-2 ning teskarisi 2 ga teng.
x=\frac{2±2\sqrt{29}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{29}+2}{-4}
x=\frac{2±2\sqrt{29}}{-4} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{29} ga qo'shish.
x=\frac{-\sqrt{29}-1}{2}
2+2\sqrt{29} ni -4 ga bo'lish.
x=\frac{2-2\sqrt{29}}{-4}
x=\frac{2±2\sqrt{29}}{-4} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{29} ni ayirish.
x=\frac{\sqrt{29}-1}{2}
2-2\sqrt{29} ni -4 ga bo'lish.
x=\frac{-\sqrt{29}-1}{2} x=\frac{\sqrt{29}-1}{2}
Tenglama yechildi.
3x^{2}-8x+4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
3x^{2}-4x-2=5x\left(x-2\right)+\left(x-2\right)\times 8
-4x ni olish uchun -8x va 4x ni birlashtirish.
3x^{2}-4x-2=5x^{2}-10x+\left(x-2\right)\times 8
5x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-4x-2=5x^{2}-10x+8x-16
x-2 ga 8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-4x-2=5x^{2}-2x-16
-2x ni olish uchun -10x va 8x ni birlashtirish.
3x^{2}-4x-2-5x^{2}=-2x-16
Ikkala tarafdan 5x^{2} ni ayirish.
-2x^{2}-4x-2=-2x-16
-2x^{2} ni olish uchun 3x^{2} va -5x^{2} ni birlashtirish.
-2x^{2}-4x-2+2x=-16
2x ni ikki tarafga qo’shing.
-2x^{2}-2x-2=-16
-2x ni olish uchun -4x va 2x ni birlashtirish.
-2x^{2}-2x=-16+2
2 ni ikki tarafga qo’shing.
-2x^{2}-2x=-14
-14 olish uchun -16 va 2'ni qo'shing.
\frac{-2x^{2}-2x}{-2}=-\frac{14}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{2}{-2}\right)x=-\frac{14}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{14}{-2}
-2 ni -2 ga bo'lish.
x^{2}+x=7
-14 ni -2 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=7+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=7+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=\frac{29}{4}
7 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=\frac{29}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{29}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{29}}{2} x+\frac{1}{2}=-\frac{\sqrt{29}}{2}
Qisqartirish.
x=\frac{\sqrt{29}-1}{2} x=\frac{-\sqrt{29}-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.