x uchun yechish
x=\frac{\sqrt{15}}{5}+1\approx 1,774596669
x=-\frac{\sqrt{15}}{5}+1\approx 0,225403331
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
x qiymati -3,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+3\right) ga, 9-x^{2},x+3,3-x ning eng kichik karralisiga ko‘paytiring.
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
3x+2 teskarisini topish uchun har birining teskarisini toping.
-3x-2=5x^{2}-14x-3+3+x
x-3 ga 5x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-3x-2=5x^{2}-14x+x
0 olish uchun -3 va 3'ni qo'shing.
-3x-2=5x^{2}-13x
-13x ni olish uchun -14x va x ni birlashtirish.
-3x-2-5x^{2}=-13x
Ikkala tarafdan 5x^{2} ni ayirish.
-3x-2-5x^{2}+13x=0
13x ni ikki tarafga qo’shing.
10x-2-5x^{2}=0
10x ni olish uchun -3x va 13x ni birlashtirish.
-5x^{2}+10x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{10^{2}-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -5 ni a, 10 ni b va -2 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\left(-5\right)\left(-2\right)}}{2\left(-5\right)}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+20\left(-2\right)}}{2\left(-5\right)}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{100-40}}{2\left(-5\right)}
20 ni -2 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{60}}{2\left(-5\right)}
100 ni -40 ga qo'shish.
x=\frac{-10±2\sqrt{15}}{2\left(-5\right)}
60 ning kvadrat ildizini chiqarish.
x=\frac{-10±2\sqrt{15}}{-10}
2 ni -5 marotabaga ko'paytirish.
x=\frac{2\sqrt{15}-10}{-10}
x=\frac{-10±2\sqrt{15}}{-10} tenglamasini yeching, bunda ± musbat. -10 ni 2\sqrt{15} ga qo'shish.
x=-\frac{\sqrt{15}}{5}+1
-10+2\sqrt{15} ni -10 ga bo'lish.
x=\frac{-2\sqrt{15}-10}{-10}
x=\frac{-10±2\sqrt{15}}{-10} tenglamasini yeching, bunda ± manfiy. -10 dan 2\sqrt{15} ni ayirish.
x=\frac{\sqrt{15}}{5}+1
-10-2\sqrt{15} ni -10 ga bo'lish.
x=-\frac{\sqrt{15}}{5}+1 x=\frac{\sqrt{15}}{5}+1
Tenglama yechildi.
-\left(3x+2\right)=\left(x-3\right)\left(5x+1\right)+3+x
x qiymati -3,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x+3\right) ga, 9-x^{2},x+3,3-x ning eng kichik karralisiga ko‘paytiring.
-3x-2=\left(x-3\right)\left(5x+1\right)+3+x
3x+2 teskarisini topish uchun har birining teskarisini toping.
-3x-2=5x^{2}-14x-3+3+x
x-3 ga 5x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-3x-2=5x^{2}-14x+x
0 olish uchun -3 va 3'ni qo'shing.
-3x-2=5x^{2}-13x
-13x ni olish uchun -14x va x ni birlashtirish.
-3x-2-5x^{2}=-13x
Ikkala tarafdan 5x^{2} ni ayirish.
-3x-2-5x^{2}+13x=0
13x ni ikki tarafga qo’shing.
10x-2-5x^{2}=0
10x ni olish uchun -3x va 13x ni birlashtirish.
10x-5x^{2}=2
2 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
-5x^{2}+10x=2
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-5x^{2}+10x}{-5}=\frac{2}{-5}
Ikki tarafini -5 ga bo‘ling.
x^{2}+\frac{10}{-5}x=\frac{2}{-5}
-5 ga bo'lish -5 ga ko'paytirishni bekor qiladi.
x^{2}-2x=\frac{2}{-5}
10 ni -5 ga bo'lish.
x^{2}-2x=-\frac{2}{5}
2 ni -5 ga bo'lish.
x^{2}-2x+1=-\frac{2}{5}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{3}{5}
-\frac{2}{5} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{3}{5}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{3}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{\sqrt{15}}{5} x-1=-\frac{\sqrt{15}}{5}
Qisqartirish.
x=\frac{\sqrt{15}}{5}+1 x=-\frac{\sqrt{15}}{5}+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}