Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(3x+2\right)\times \frac{x+2}{3}=0
Tenglamaning ikkala tarafini 6 ga, 6,3 ning eng kichik karralisiga ko‘paytiring.
\frac{\left(3x+2\right)\left(x+2\right)}{3}=0
\left(3x+2\right)\times \frac{x+2}{3} ni yagona kasrga aylantiring.
\frac{3x^{2}+6x+2x+4}{3}=0
3x+2 ifodaning har bir elementini x+2 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{3x^{2}+8x+4}{3}=0
8x ni olish uchun 6x va 2x ni birlashtirish.
x^{2}+\frac{8}{3}x+\frac{4}{3}=0
x^{2}+\frac{8}{3}x+\frac{4}{3} natijani olish uchun 3x^{2}+8x+4 ning har bir ifodasini 3 ga bo‘ling.
x=\frac{-\frac{8}{3}±\sqrt{\left(\frac{8}{3}\right)^{2}-4\times \frac{4}{3}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, \frac{8}{3} ni b va \frac{4}{3} ni c bilan almashtiring.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-4\times \frac{4}{3}}}{2}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{8}{3} kvadratini chiqarish.
x=\frac{-\frac{8}{3}±\sqrt{\frac{64}{9}-\frac{16}{3}}}{2}
-4 ni \frac{4}{3} marotabaga ko'paytirish.
x=\frac{-\frac{8}{3}±\sqrt{\frac{16}{9}}}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{64}{9} ni -\frac{16}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\frac{8}{3}±\frac{4}{3}}{2}
\frac{16}{9} ning kvadrat ildizini chiqarish.
x=-\frac{\frac{4}{3}}{2}
x=\frac{-\frac{8}{3}±\frac{4}{3}}{2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{8}{3} ni \frac{4}{3} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{2}{3}
-\frac{4}{3} ni 2 ga bo'lish.
x=-\frac{4}{2}
x=\frac{-\frac{8}{3}±\frac{4}{3}}{2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{4}{3} ni -\frac{8}{3} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-2
-4 ni 2 ga bo'lish.
x=-\frac{2}{3} x=-2
Tenglama yechildi.
\left(3x+2\right)\times \frac{x+2}{3}=0
Tenglamaning ikkala tarafini 6 ga, 6,3 ning eng kichik karralisiga ko‘paytiring.
\frac{\left(3x+2\right)\left(x+2\right)}{3}=0
\left(3x+2\right)\times \frac{x+2}{3} ni yagona kasrga aylantiring.
\frac{3x^{2}+6x+2x+4}{3}=0
3x+2 ifodaning har bir elementini x+2 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{3x^{2}+8x+4}{3}=0
8x ni olish uchun 6x va 2x ni birlashtirish.
x^{2}+\frac{8}{3}x+\frac{4}{3}=0
x^{2}+\frac{8}{3}x+\frac{4}{3} natijani olish uchun 3x^{2}+8x+4 ning har bir ifodasini 3 ga bo‘ling.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
Ikkala tarafdan \frac{4}{3} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
\frac{8}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{4}{3} olish uchun. Keyin, \frac{4}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{4}{3} kvadratini chiqarish.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{4}{3} ni \frac{16}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
x^{2}+\frac{8}{3}x+\frac{16}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
Qisqartirish.
x=-\frac{2}{3} x=-2
Tenglamaning ikkala tarafidan \frac{4}{3} ni ayirish.