x uchun yechish (complex solution)
x=\frac{35+\sqrt{4535}i}{48}\approx 0,729166667+1,402966846i
x=\frac{-\sqrt{4535}i+35}{48}\approx 0,729166667-1,402966846i
Grafik
Baham ko'rish
Klipbordga nusxa olish
12\left(3x+10\right)-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12x ga, x,3,2,4 ning eng kichik karralisiga ko‘paytiring.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
12 ga 3x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{2x}{4}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 va 4 ning eng kichik umumiy karralisi 4. \frac{x}{2} ni \frac{2}{2} marotabaga ko'paytirish.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{2x+7x-6}{4}\right)\times 12x=6x\left(7x+5\right)
\frac{2x}{4} va \frac{7x-6}{4} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{9x-6}{4}\right)\times 12x=6x\left(7x+5\right)
2x+7x-6 kabi iboralarga o‘xshab birlashtiring.
36x+120-2\left(\frac{9x-4}{3}-\frac{3\left(9x-6\right)}{4}\right)\times 12x=6x\left(7x+5\right)
3\times \frac{9x-6}{4} ni yagona kasrga aylantiring.
36x+120-2\left(\frac{9x-4}{3}-\frac{27x-18}{4}\right)\times 12x=6x\left(7x+5\right)
3 ga 9x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120-2\left(\frac{4\left(9x-4\right)}{12}-\frac{3\left(27x-18\right)}{12}\right)\times 12x=6x\left(7x+5\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 4 ning eng kichik umumiy karralisi 12. \frac{9x-4}{3} ni \frac{4}{4} marotabaga ko'paytirish. \frac{27x-18}{4} ni \frac{3}{3} marotabaga ko'paytirish.
36x+120-2\times \frac{4\left(9x-4\right)-3\left(27x-18\right)}{12}\times 12x=6x\left(7x+5\right)
\frac{4\left(9x-4\right)}{12} va \frac{3\left(27x-18\right)}{12} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
36x+120-2\times \frac{36x-16-81x+54}{12}\times 12x=6x\left(7x+5\right)
4\left(9x-4\right)-3\left(27x-18\right) ichidagi ko‘paytirishlarni bajaring.
36x+120-2\times \frac{-45x+38}{12}\times 12x=6x\left(7x+5\right)
36x-16-81x+54 kabi iboralarga o‘xshab birlashtiring.
36x+120-24\times \frac{-45x+38}{12}x=6x\left(7x+5\right)
24 hosil qilish uchun 2 va 12 ni ko'paytirish.
36x+120-2\left(-45x+38\right)x=6x\left(7x+5\right)
24 va 12 ichida eng katta umumiy 12 faktorini bekor qiling.
36x+120-2\left(-45x+38\right)x=42x^{2}+30x
6x ga 7x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120-2\left(-45x+38\right)x-42x^{2}=30x
Ikkala tarafdan 42x^{2} ni ayirish.
36x+120-2\left(-45x+38\right)x-42x^{2}-30x=0
Ikkala tarafdan 30x ni ayirish.
36x+120+\left(90x-76\right)x-42x^{2}-30x=0
-2 ga -45x+38 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120+90x^{2}-76x-42x^{2}-30x=0
90x-76 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-40x+120+90x^{2}-42x^{2}-30x=0
-40x ni olish uchun 36x va -76x ni birlashtirish.
-40x+120+48x^{2}-30x=0
48x^{2} ni olish uchun 90x^{2} va -42x^{2} ni birlashtirish.
-70x+120+48x^{2}=0
-70x ni olish uchun -40x va -30x ni birlashtirish.
48x^{2}-70x+120=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 48\times 120}}{2\times 48}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 48 ni a, -70 ni b va 120 ni c bilan almashtiring.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 48\times 120}}{2\times 48}
-70 kvadratini chiqarish.
x=\frac{-\left(-70\right)±\sqrt{4900-192\times 120}}{2\times 48}
-4 ni 48 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{4900-23040}}{2\times 48}
-192 ni 120 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{-18140}}{2\times 48}
4900 ni -23040 ga qo'shish.
x=\frac{-\left(-70\right)±2\sqrt{4535}i}{2\times 48}
-18140 ning kvadrat ildizini chiqarish.
x=\frac{70±2\sqrt{4535}i}{2\times 48}
-70 ning teskarisi 70 ga teng.
x=\frac{70±2\sqrt{4535}i}{96}
2 ni 48 marotabaga ko'paytirish.
x=\frac{70+2\sqrt{4535}i}{96}
x=\frac{70±2\sqrt{4535}i}{96} tenglamasini yeching, bunda ± musbat. 70 ni 2i\sqrt{4535} ga qo'shish.
x=\frac{35+\sqrt{4535}i}{48}
70+2i\sqrt{4535} ni 96 ga bo'lish.
x=\frac{-2\sqrt{4535}i+70}{96}
x=\frac{70±2\sqrt{4535}i}{96} tenglamasini yeching, bunda ± manfiy. 70 dan 2i\sqrt{4535} ni ayirish.
x=\frac{-\sqrt{4535}i+35}{48}
70-2i\sqrt{4535} ni 96 ga bo'lish.
x=\frac{35+\sqrt{4535}i}{48} x=\frac{-\sqrt{4535}i+35}{48}
Tenglama yechildi.
12\left(3x+10\right)-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12x ga, x,3,2,4 ning eng kichik karralisiga ko‘paytiring.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{x}{2}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
12 ga 3x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120-2\left(\frac{9x-4}{3}-3\left(\frac{2x}{4}+\frac{7x-6}{4}\right)\right)\times 12x=6x\left(7x+5\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 va 4 ning eng kichik umumiy karralisi 4. \frac{x}{2} ni \frac{2}{2} marotabaga ko'paytirish.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{2x+7x-6}{4}\right)\times 12x=6x\left(7x+5\right)
\frac{2x}{4} va \frac{7x-6}{4} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
36x+120-2\left(\frac{9x-4}{3}-3\times \frac{9x-6}{4}\right)\times 12x=6x\left(7x+5\right)
2x+7x-6 kabi iboralarga o‘xshab birlashtiring.
36x+120-2\left(\frac{9x-4}{3}-\frac{3\left(9x-6\right)}{4}\right)\times 12x=6x\left(7x+5\right)
3\times \frac{9x-6}{4} ni yagona kasrga aylantiring.
36x+120-2\left(\frac{9x-4}{3}-\frac{27x-18}{4}\right)\times 12x=6x\left(7x+5\right)
3 ga 9x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120-2\left(\frac{4\left(9x-4\right)}{12}-\frac{3\left(27x-18\right)}{12}\right)\times 12x=6x\left(7x+5\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 3 va 4 ning eng kichik umumiy karralisi 12. \frac{9x-4}{3} ni \frac{4}{4} marotabaga ko'paytirish. \frac{27x-18}{4} ni \frac{3}{3} marotabaga ko'paytirish.
36x+120-2\times \frac{4\left(9x-4\right)-3\left(27x-18\right)}{12}\times 12x=6x\left(7x+5\right)
\frac{4\left(9x-4\right)}{12} va \frac{3\left(27x-18\right)}{12} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
36x+120-2\times \frac{36x-16-81x+54}{12}\times 12x=6x\left(7x+5\right)
4\left(9x-4\right)-3\left(27x-18\right) ichidagi ko‘paytirishlarni bajaring.
36x+120-2\times \frac{-45x+38}{12}\times 12x=6x\left(7x+5\right)
36x-16-81x+54 kabi iboralarga o‘xshab birlashtiring.
36x+120-24\times \frac{-45x+38}{12}x=6x\left(7x+5\right)
24 hosil qilish uchun 2 va 12 ni ko'paytirish.
36x+120-2\left(-45x+38\right)x=6x\left(7x+5\right)
24 va 12 ichida eng katta umumiy 12 faktorini bekor qiling.
36x+120-2\left(-45x+38\right)x=42x^{2}+30x
6x ga 7x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120-2\left(-45x+38\right)x-42x^{2}=30x
Ikkala tarafdan 42x^{2} ni ayirish.
36x+120-2\left(-45x+38\right)x-42x^{2}-30x=0
Ikkala tarafdan 30x ni ayirish.
36x+120+\left(90x-76\right)x-42x^{2}-30x=0
-2 ga -45x+38 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x+120+90x^{2}-76x-42x^{2}-30x=0
90x-76 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-40x+120+90x^{2}-42x^{2}-30x=0
-40x ni olish uchun 36x va -76x ni birlashtirish.
-40x+120+48x^{2}-30x=0
48x^{2} ni olish uchun 90x^{2} va -42x^{2} ni birlashtirish.
-70x+120+48x^{2}=0
-70x ni olish uchun -40x va -30x ni birlashtirish.
-70x+48x^{2}=-120
Ikkala tarafdan 120 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
48x^{2}-70x=-120
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{48x^{2}-70x}{48}=-\frac{120}{48}
Ikki tarafini 48 ga bo‘ling.
x^{2}+\left(-\frac{70}{48}\right)x=-\frac{120}{48}
48 ga bo'lish 48 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{35}{24}x=-\frac{120}{48}
\frac{-70}{48} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{35}{24}x=-\frac{5}{2}
\frac{-120}{48} ulushini 24 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{35}{24}x+\left(-\frac{35}{48}\right)^{2}=-\frac{5}{2}+\left(-\frac{35}{48}\right)^{2}
-\frac{35}{24} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{35}{48} olish uchun. Keyin, -\frac{35}{48} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=-\frac{5}{2}+\frac{1225}{2304}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{35}{48} kvadratini chiqarish.
x^{2}-\frac{35}{24}x+\frac{1225}{2304}=-\frac{4535}{2304}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{2} ni \frac{1225}{2304} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{35}{48}\right)^{2}=-\frac{4535}{2304}
x^{2}-\frac{35}{24}x+\frac{1225}{2304} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{35}{48}\right)^{2}}=\sqrt{-\frac{4535}{2304}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{35}{48}=\frac{\sqrt{4535}i}{48} x-\frac{35}{48}=-\frac{\sqrt{4535}i}{48}
Qisqartirish.
x=\frac{35+\sqrt{4535}i}{48} x=\frac{-\sqrt{4535}i+35}{48}
\frac{35}{48} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}