Asosiy tarkibga oʻtish
w uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3w\left(w+8\right)+w\left(w-4\right)-6=10-2w^{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
3w^{2}+24w+w\left(w-4\right)-6=10-2w^{2}
3w ga w+8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3w^{2}+24w+w^{2}-4w-6=10-2w^{2}
w ga w-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4w^{2}+24w-4w-6=10-2w^{2}
4w^{2} ni olish uchun 3w^{2} va w^{2} ni birlashtirish.
4w^{2}+20w-6=10-2w^{2}
20w ni olish uchun 24w va -4w ni birlashtirish.
4w^{2}+20w-6-10=-2w^{2}
Ikkala tarafdan 10 ni ayirish.
4w^{2}+20w-16=-2w^{2}
-16 olish uchun -6 dan 10 ni ayirish.
4w^{2}+20w-16+2w^{2}=0
2w^{2} ni ikki tarafga qo’shing.
6w^{2}+20w-16=0
6w^{2} ni olish uchun 4w^{2} va 2w^{2} ni birlashtirish.
3w^{2}+10w-8=0
Ikki tarafini 2 ga bo‘ling.
a+b=10 ab=3\left(-8\right)=-24
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 3w^{2}+aw+bw-8 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,24 -2,12 -3,8 -4,6
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -24-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Har bir juftlik yigʻindisini hisoblang.
a=-2 b=12
Yechim – 10 yigʻindisini beruvchi juftlik.
\left(3w^{2}-2w\right)+\left(12w-8\right)
3w^{2}+10w-8 ni \left(3w^{2}-2w\right)+\left(12w-8\right) sifatida qaytadan yozish.
w\left(3w-2\right)+4\left(3w-2\right)
Birinchi guruhda w ni va ikkinchi guruhda 4 ni faktordan chiqaring.
\left(3w-2\right)\left(w+4\right)
Distributiv funktsiyasidan foydalangan holda 3w-2 umumiy terminini chiqaring.
w=\frac{2}{3} w=-4
Tenglamani yechish uchun 3w-2=0 va w+4=0 ni yeching.
3w\left(w+8\right)+w\left(w-4\right)-6=10-2w^{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
3w^{2}+24w+w\left(w-4\right)-6=10-2w^{2}
3w ga w+8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3w^{2}+24w+w^{2}-4w-6=10-2w^{2}
w ga w-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4w^{2}+24w-4w-6=10-2w^{2}
4w^{2} ni olish uchun 3w^{2} va w^{2} ni birlashtirish.
4w^{2}+20w-6=10-2w^{2}
20w ni olish uchun 24w va -4w ni birlashtirish.
4w^{2}+20w-6-10=-2w^{2}
Ikkala tarafdan 10 ni ayirish.
4w^{2}+20w-16=-2w^{2}
-16 olish uchun -6 dan 10 ni ayirish.
4w^{2}+20w-16+2w^{2}=0
2w^{2} ni ikki tarafga qo’shing.
6w^{2}+20w-16=0
6w^{2} ni olish uchun 4w^{2} va 2w^{2} ni birlashtirish.
w=\frac{-20±\sqrt{20^{2}-4\times 6\left(-16\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 20 ni b va -16 ni c bilan almashtiring.
w=\frac{-20±\sqrt{400-4\times 6\left(-16\right)}}{2\times 6}
20 kvadratini chiqarish.
w=\frac{-20±\sqrt{400-24\left(-16\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
w=\frac{-20±\sqrt{400+384}}{2\times 6}
-24 ni -16 marotabaga ko'paytirish.
w=\frac{-20±\sqrt{784}}{2\times 6}
400 ni 384 ga qo'shish.
w=\frac{-20±28}{2\times 6}
784 ning kvadrat ildizini chiqarish.
w=\frac{-20±28}{12}
2 ni 6 marotabaga ko'paytirish.
w=\frac{8}{12}
w=\frac{-20±28}{12} tenglamasini yeching, bunda ± musbat. -20 ni 28 ga qo'shish.
w=\frac{2}{3}
\frac{8}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w=-\frac{48}{12}
w=\frac{-20±28}{12} tenglamasini yeching, bunda ± manfiy. -20 dan 28 ni ayirish.
w=-4
-48 ni 12 ga bo'lish.
w=\frac{2}{3} w=-4
Tenglama yechildi.
3w\left(w+8\right)+w\left(w-4\right)-6=10-2w^{2}
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
3w^{2}+24w+w\left(w-4\right)-6=10-2w^{2}
3w ga w+8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3w^{2}+24w+w^{2}-4w-6=10-2w^{2}
w ga w-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4w^{2}+24w-4w-6=10-2w^{2}
4w^{2} ni olish uchun 3w^{2} va w^{2} ni birlashtirish.
4w^{2}+20w-6=10-2w^{2}
20w ni olish uchun 24w va -4w ni birlashtirish.
4w^{2}+20w-6+2w^{2}=10
2w^{2} ni ikki tarafga qo’shing.
6w^{2}+20w-6=10
6w^{2} ni olish uchun 4w^{2} va 2w^{2} ni birlashtirish.
6w^{2}+20w=10+6
6 ni ikki tarafga qo’shing.
6w^{2}+20w=16
16 olish uchun 10 va 6'ni qo'shing.
\frac{6w^{2}+20w}{6}=\frac{16}{6}
Ikki tarafini 6 ga bo‘ling.
w^{2}+\frac{20}{6}w=\frac{16}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
w^{2}+\frac{10}{3}w=\frac{16}{6}
\frac{20}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w^{2}+\frac{10}{3}w=\frac{8}{3}
\frac{16}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w^{2}+\frac{10}{3}w+\left(\frac{5}{3}\right)^{2}=\frac{8}{3}+\left(\frac{5}{3}\right)^{2}
\frac{10}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{3} olish uchun. Keyin, \frac{5}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}+\frac{10}{3}w+\frac{25}{9}=\frac{8}{3}+\frac{25}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{3} kvadratini chiqarish.
w^{2}+\frac{10}{3}w+\frac{25}{9}=\frac{49}{9}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{8}{3} ni \frac{25}{9} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(w+\frac{5}{3}\right)^{2}=\frac{49}{9}
w^{2}+\frac{10}{3}w+\frac{25}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w+\frac{5}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w+\frac{5}{3}=\frac{7}{3} w+\frac{5}{3}=-\frac{7}{3}
Qisqartirish.
w=\frac{2}{3} w=-4
Tenglamaning ikkala tarafidan \frac{5}{3} ni ayirish.