Baholash
\frac{1}{t^{6}}
t ga nisbatan hosilani topish
-\frac{6}{t^{7}}
Baham ko'rish
Klipbordga nusxa olish
\frac{3^{1}s^{5}t^{1}}{3^{1}s^{5}t^{7}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
3^{1-1}s^{5-5}t^{1-7}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
3^{0}s^{5-5}t^{1-7}
1 dan 1 ni ayirish.
s^{5-5}t^{1-7}
Har qanday a raqami uchun (0 bundan mustasno) a^{0}=1.
s^{0}t^{1-7}
5 dan 5 ni ayirish.
t^{1-7}
Har qanday a raqami uchun (0 bundan mustasno) a^{0}=1.
s^{0}t^{-6}
1 dan 7 ni ayirish.
1t^{-6}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
t^{-6}
Har qanday t sharti uchun t\times 1=t va 1t=t.
\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{t^{6}})
Surat va maxrajdagi ikkala 3ts^{5} ni qisqartiring.
-\left(t^{6}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{6})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(t^{6}\right)^{-2}\times 6t^{6-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-6t^{5}\left(t^{6}\right)^{-2}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}