Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i}
3i ni 1-i marotabaga ko'paytirish.
\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{3+3i}{1+i}
3i\times 1+3\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1-i.
\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+3i\right)\left(1-i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2}
Binomlarni ko‘paytirgandek 3+3i va 1-i murakkab sonlarni ko‘paytiring.
\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{3-3i+3i+3}{2}
3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3+3+\left(-3+3\right)i}{2}
3-3i+3i+3 ichida real va mavhum qismlarni birlashtiring.
\frac{6}{2}
3+3+\left(-3+3\right)i ichida qo‘shishlarni bajaring.
3
3 ni olish uchun 6 ni 2 ga bo‘ling.
Re(\frac{3i\times 1+3\left(-1\right)i^{2}}{1+i})
3i ni 1-i marotabaga ko'paytirish.
Re(\frac{3i\times 1+3\left(-1\right)\left(-1\right)}{1+i})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{3+3i}{1+i})
3i\times 1+3\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
\frac{3+3i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+3i\right)\left(1-i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)i^{2}}{2})
Binomlarni ko‘paytirgandek 3+3i va 1-i murakkab sonlarni ko‘paytiring.
Re(\frac{3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{3-3i+3i+3}{2})
3\times 1+3\left(-i\right)+3i\times 1+3\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{3+3+\left(-3+3\right)i}{2})
3-3i+3i+3 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{6}{2})
3+3+\left(-3+3\right)i ichida qo‘shishlarni bajaring.
Re(3)
3 ni olish uchun 6 ni 2 ga bo‘ling.
3
3 ning real qismi – 3.