Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2}{\left(2-i\right)\left(5+2i\right)}
2 olish uchun 3 dan 1 ni ayirish.
\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2i^{2}}
Binomlarni ko‘paytirgandek 2-i va 5+2i murakkab sonlarni ko‘paytiring.
\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right)}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{2}{10+4i-5i+2}
2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2}{10+2+\left(4-5\right)i}
10+4i-5i+2 ichida real va mavhum qismlarni birlashtiring.
\frac{2}{12-i}
10+2+\left(4-5\right)i ichida qo‘shishlarni bajaring.
\frac{2\left(12+i\right)}{\left(12-i\right)\left(12+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 12+i.
\frac{2\left(12+i\right)}{12^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(12+i\right)}{145}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2\times 12+2i}{145}
2 ni 12+i marotabaga ko'paytirish.
\frac{24+2i}{145}
2\times 12+2i ichidagi ko‘paytirishlarni bajaring.
\frac{24}{145}+\frac{2}{145}i
\frac{24}{145}+\frac{2}{145}i ni olish uchun 24+2i ni 145 ga bo‘ling.
Re(\frac{2}{\left(2-i\right)\left(5+2i\right)})
2 olish uchun 3 dan 1 ni ayirish.
Re(\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2i^{2}})
Binomlarni ko‘paytirgandek 2-i va 5+2i murakkab sonlarni ko‘paytiring.
Re(\frac{2}{2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right)})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{2}{10+4i-5i+2})
2\times 5+2\times \left(2i\right)-i\times 5-2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{2}{10+2+\left(4-5\right)i})
10+4i-5i+2 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{2}{12-i})
10+2+\left(4-5\right)i ichida qo‘shishlarni bajaring.
Re(\frac{2\left(12+i\right)}{\left(12-i\right)\left(12+i\right)})
\frac{2}{12-i}ning surat va maxrajini murakkab tutash maxraj 12+i bilan ko‘paytiring.
Re(\frac{2\left(12+i\right)}{12^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2\left(12+i\right)}{145})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2\times 12+2i}{145})
2 ni 12+i marotabaga ko'paytirish.
Re(\frac{24+2i}{145})
2\times 12+2i ichidagi ko‘paytirishlarni bajaring.
Re(\frac{24}{145}+\frac{2}{145}i)
\frac{24}{145}+\frac{2}{145}i ni olish uchun 24+2i ni 145 ga bo‘ling.
\frac{24}{145}
\frac{24}{145}+\frac{2}{145}i ning real qismi – \frac{24}{145}.