x uchun yechish
x=\sqrt{19}\approx 4,358898944
x=-\sqrt{19}\approx -4,358898944
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+3\right)\times 3-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
x qiymati -3,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+3\right) ga, x-2,x+3 ning eng kichik karralisiga ko‘paytiring.
3x+9-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
x+3 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+9-\left(2x-4\right)=\left(x-2\right)\left(x+3\right)
x-2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+9-2x+4=\left(x-2\right)\left(x+3\right)
2x-4 teskarisini topish uchun har birining teskarisini toping.
x+9+4=\left(x-2\right)\left(x+3\right)
x ni olish uchun 3x va -2x ni birlashtirish.
x+13=\left(x-2\right)\left(x+3\right)
13 olish uchun 9 va 4'ni qo'shing.
x+13=x^{2}+x-6
x-2 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x+13-x^{2}=x-6
Ikkala tarafdan x^{2} ni ayirish.
x+13-x^{2}-x=-6
Ikkala tarafdan x ni ayirish.
13-x^{2}=-6
0 ni olish uchun x va -x ni birlashtirish.
-x^{2}=-6-13
Ikkala tarafdan 13 ni ayirish.
-x^{2}=-19
-19 olish uchun -6 dan 13 ni ayirish.
x^{2}=\frac{-19}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}=19
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-19}{-1} kasrini 19 ga soddalashtirish mumkin.
x=\sqrt{19} x=-\sqrt{19}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(x+3\right)\times 3-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
x qiymati -3,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+3\right) ga, x-2,x+3 ning eng kichik karralisiga ko‘paytiring.
3x+9-\left(x-2\right)\times 2=\left(x-2\right)\left(x+3\right)
x+3 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+9-\left(2x-4\right)=\left(x-2\right)\left(x+3\right)
x-2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x+9-2x+4=\left(x-2\right)\left(x+3\right)
2x-4 teskarisini topish uchun har birining teskarisini toping.
x+9+4=\left(x-2\right)\left(x+3\right)
x ni olish uchun 3x va -2x ni birlashtirish.
x+13=\left(x-2\right)\left(x+3\right)
13 olish uchun 9 va 4'ni qo'shing.
x+13=x^{2}+x-6
x-2 ga x+3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x+13-x^{2}=x-6
Ikkala tarafdan x^{2} ni ayirish.
x+13-x^{2}-x=-6
Ikkala tarafdan x ni ayirish.
13-x^{2}=-6
0 ni olish uchun x va -x ni birlashtirish.
13-x^{2}+6=0
6 ni ikki tarafga qo’shing.
19-x^{2}=0
19 olish uchun 13 va 6'ni qo'shing.
-x^{2}+19=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 19}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 0 ni b va 19 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-1\right)\times 19}}{2\left(-1\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\times 19}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{0±\sqrt{76}}{2\left(-1\right)}
4 ni 19 marotabaga ko'paytirish.
x=\frac{0±2\sqrt{19}}{2\left(-1\right)}
76 ning kvadrat ildizini chiqarish.
x=\frac{0±2\sqrt{19}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=-\sqrt{19}
x=\frac{0±2\sqrt{19}}{-2} tenglamasini yeching, bunda ± musbat.
x=\sqrt{19}
x=\frac{0±2\sqrt{19}}{-2} tenglamasini yeching, bunda ± manfiy.
x=-\sqrt{19} x=\sqrt{19}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}