Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3+xx=3x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
3+x^{2}=3x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3+x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
x^{2}-3x+3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va 3 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3}}{2}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-12}}{2}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{-3}}{2}
9 ni -12 ga qo'shish.
x=\frac{-\left(-3\right)±\sqrt{3}i}{2}
-3 ning kvadrat ildizini chiqarish.
x=\frac{3±\sqrt{3}i}{2}
-3 ning teskarisi 3 ga teng.
x=\frac{3+\sqrt{3}i}{2}
x=\frac{3±\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 3 ni i\sqrt{3} ga qo'shish.
x=\frac{-\sqrt{3}i+3}{2}
x=\frac{3±\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 3 dan i\sqrt{3} ni ayirish.
x=\frac{3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+3}{2}
Tenglama yechildi.
3+xx=3x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
3+x^{2}=3x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
3+x^{2}-3x=0
Ikkala tarafdan 3x ni ayirish.
x^{2}-3x=-3
Ikkala tarafdan 3 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-3+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=-3+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=-\frac{3}{4}
-3 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=-\frac{3}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{3}i}{2} x-\frac{3}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.