x uchun yechish
x=\sqrt{5}\approx 2,236067977
x=-\sqrt{5}\approx -2,236067977
Grafik
Baham ko'rish
Klipbordga nusxa olish
6\times 3-\left(3x^{2}-3\right)=1+x^{2}
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 6\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right) ga, x^{4}-1,2x^{2}+2,6-6x^{2} ning eng kichik karralisiga ko‘paytiring.
18-\left(3x^{2}-3\right)=1+x^{2}
18 hosil qilish uchun 6 va 3 ni ko'paytirish.
18-3x^{2}+3=1+x^{2}
3x^{2}-3 teskarisini topish uchun har birining teskarisini toping.
21-3x^{2}=1+x^{2}
21 olish uchun 18 va 3'ni qo'shing.
21-3x^{2}-x^{2}=1
Ikkala tarafdan x^{2} ni ayirish.
21-4x^{2}=1
-4x^{2} ni olish uchun -3x^{2} va -x^{2} ni birlashtirish.
-4x^{2}=1-21
Ikkala tarafdan 21 ni ayirish.
-4x^{2}=-20
-20 olish uchun 1 dan 21 ni ayirish.
x^{2}=\frac{-20}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}=5
5 ni olish uchun -20 ni -4 ga bo‘ling.
x=\sqrt{5} x=-\sqrt{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
6\times 3-\left(3x^{2}-3\right)=1+x^{2}
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 6\left(x-1\right)\left(x+1\right)\left(x^{2}+1\right) ga, x^{4}-1,2x^{2}+2,6-6x^{2} ning eng kichik karralisiga ko‘paytiring.
18-\left(3x^{2}-3\right)=1+x^{2}
18 hosil qilish uchun 6 va 3 ni ko'paytirish.
18-3x^{2}+3=1+x^{2}
3x^{2}-3 teskarisini topish uchun har birining teskarisini toping.
21-3x^{2}=1+x^{2}
21 olish uchun 18 va 3'ni qo'shing.
21-3x^{2}-1=x^{2}
Ikkala tarafdan 1 ni ayirish.
20-3x^{2}=x^{2}
20 olish uchun 21 dan 1 ni ayirish.
20-3x^{2}-x^{2}=0
Ikkala tarafdan x^{2} ni ayirish.
20-4x^{2}=0
-4x^{2} ni olish uchun -3x^{2} va -x^{2} ni birlashtirish.
-4x^{2}+20=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)\times 20}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 0 ni b va 20 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-4\right)\times 20}}{2\left(-4\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{16\times 20}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{320}}{2\left(-4\right)}
16 ni 20 marotabaga ko'paytirish.
x=\frac{0±8\sqrt{5}}{2\left(-4\right)}
320 ning kvadrat ildizini chiqarish.
x=\frac{0±8\sqrt{5}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=-\sqrt{5}
x=\frac{0±8\sqrt{5}}{-8} tenglamasini yeching, bunda ± musbat.
x=\sqrt{5}
x=\frac{0±8\sqrt{5}}{-8} tenglamasini yeching, bunda ± manfiy.
x=-\sqrt{5} x=\sqrt{5}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}