x uchun yechish
x=2
x=-2
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-1\right)\times 3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
3x-3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
x-1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-3+\left(x^{2}-1\right)\times 2=\left(x+1\right)\times 3
x-1 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x-3+2x^{2}-2=\left(x+1\right)\times 3
x^{2}-1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-5+2x^{2}=\left(x+1\right)\times 3
-5 olish uchun -3 dan 2 ni ayirish.
3x-5+2x^{2}=3x+3
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-5+2x^{2}-3x=3
Ikkala tarafdan 3x ni ayirish.
-5+2x^{2}=3
0 ni olish uchun 3x va -3x ni birlashtirish.
2x^{2}=3+5
5 ni ikki tarafga qo’shing.
2x^{2}=8
8 olish uchun 3 va 5'ni qo'shing.
x^{2}=\frac{8}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=4
4 ni olish uchun 8 ni 2 ga bo‘ling.
x=2 x=-2
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\left(x-1\right)\times 3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
3x-3+\left(x-1\right)\left(x+1\right)\times 2=\left(x+1\right)\times 3
x-1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-3+\left(x^{2}-1\right)\times 2=\left(x+1\right)\times 3
x-1 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x-3+2x^{2}-2=\left(x+1\right)\times 3
x^{2}-1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-5+2x^{2}=\left(x+1\right)\times 3
-5 olish uchun -3 dan 2 ni ayirish.
3x-5+2x^{2}=3x+3
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-5+2x^{2}-3x=3
Ikkala tarafdan 3x ni ayirish.
-5+2x^{2}=3
0 ni olish uchun 3x va -3x ni birlashtirish.
-5+2x^{2}-3=0
Ikkala tarafdan 3 ni ayirish.
-8+2x^{2}=0
-8 olish uchun -5 dan 3 ni ayirish.
2x^{2}-8=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-8\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -8 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-8\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-8\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{64}}{2\times 2}
-8 ni -8 marotabaga ko'paytirish.
x=\frac{0±8}{2\times 2}
64 ning kvadrat ildizini chiqarish.
x=\frac{0±8}{4}
2 ni 2 marotabaga ko'paytirish.
x=2
x=\frac{0±8}{4} tenglamasini yeching, bunda ± musbat. 8 ni 4 ga bo'lish.
x=-2
x=\frac{0±8}{4} tenglamasini yeching, bunda ± manfiy. -8 ni 4 ga bo'lish.
x=2 x=-2
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}