x uchun yechish
x=\frac{28y}{3}-\frac{3}{2}
y uchun yechish
y=\frac{3x}{28}+\frac{9}{56}
Grafik
Baham ko'rish
Klipbordga nusxa olish
36x-105\left(\frac{x}{5}+\frac{1}{2}\right)=140y-75
Tenglamaning ikkala tarafini 60 ga, 5,4,2,3 ning eng kichik karralisiga ko‘paytiring.
36x-105\left(\frac{2x}{10}+\frac{5}{10}\right)=140y-75
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 va 2 ning eng kichik umumiy karralisi 10. \frac{x}{5} ni \frac{2}{2} marotabaga ko'paytirish. \frac{1}{2} ni \frac{5}{5} marotabaga ko'paytirish.
36x-105\times \frac{2x+5}{10}=140y-75
\frac{2x}{10} va \frac{5}{10} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
36x-\frac{105\left(2x+5\right)}{10}=140y-75
105\times \frac{2x+5}{10} ni yagona kasrga aylantiring.
36x-\frac{210x+525}{10}=140y-75
105 ga 2x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x-\left(21x+\frac{105}{2}\right)=140y-75
21x+\frac{105}{2} natijani olish uchun 210x+525 ning har bir ifodasini 10 ga bo‘ling.
36x-21x-\frac{105}{2}=140y-75
21x+\frac{105}{2} teskarisini topish uchun har birining teskarisini toping.
15x-\frac{105}{2}=140y-75
15x ni olish uchun 36x va -21x ni birlashtirish.
15x=140y-75+\frac{105}{2}
\frac{105}{2} ni ikki tarafga qo’shing.
15x=140y-\frac{45}{2}
-\frac{45}{2} olish uchun -75 va \frac{105}{2}'ni qo'shing.
\frac{15x}{15}=\frac{140y-\frac{45}{2}}{15}
Ikki tarafini 15 ga bo‘ling.
x=\frac{140y-\frac{45}{2}}{15}
15 ga bo'lish 15 ga ko'paytirishni bekor qiladi.
x=\frac{28y}{3}-\frac{3}{2}
140y-\frac{45}{2} ni 15 ga bo'lish.
36x-105\left(\frac{x}{5}+\frac{1}{2}\right)=140y-75
Tenglamaning ikkala tarafini 60 ga, 5,4,2,3 ning eng kichik karralisiga ko‘paytiring.
36x-105\left(\frac{2x}{10}+\frac{5}{10}\right)=140y-75
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 5 va 2 ning eng kichik umumiy karralisi 10. \frac{x}{5} ni \frac{2}{2} marotabaga ko'paytirish. \frac{1}{2} ni \frac{5}{5} marotabaga ko'paytirish.
36x-105\times \frac{2x+5}{10}=140y-75
\frac{2x}{10} va \frac{5}{10} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
36x-\frac{105\left(2x+5\right)}{10}=140y-75
105\times \frac{2x+5}{10} ni yagona kasrga aylantiring.
36x-\frac{210x+525}{10}=140y-75
105 ga 2x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
36x-\left(21x+\frac{105}{2}\right)=140y-75
21x+\frac{105}{2} natijani olish uchun 210x+525 ning har bir ifodasini 10 ga bo‘ling.
36x-21x-\frac{105}{2}=140y-75
21x+\frac{105}{2} teskarisini topish uchun har birining teskarisini toping.
15x-\frac{105}{2}=140y-75
15x ni olish uchun 36x va -21x ni birlashtirish.
140y-75=15x-\frac{105}{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
140y=15x-\frac{105}{2}+75
75 ni ikki tarafga qo’shing.
140y=15x+\frac{45}{2}
\frac{45}{2} olish uchun -\frac{105}{2} va 75'ni qo'shing.
\frac{140y}{140}=\frac{15x+\frac{45}{2}}{140}
Ikki tarafini 140 ga bo‘ling.
y=\frac{15x+\frac{45}{2}}{140}
140 ga bo'lish 140 ga ko'paytirishni bekor qiladi.
y=\frac{3x}{28}+\frac{9}{56}
15x+\frac{45}{2} ni 140 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}