z uchun yechish
z=-24
Viktorina
Linear Equation
5xshash muammolar:
\frac { 3 } { 4 } ( z + 8 ) = \frac { 1 } { 3 } ( z - 12 )
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{4}z+\frac{3}{4}\times 8=\frac{1}{3}\left(z-12\right)
\frac{3}{4} ga z+8 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{4}z+\frac{3\times 8}{4}=\frac{1}{3}\left(z-12\right)
\frac{3}{4}\times 8 ni yagona kasrga aylantiring.
\frac{3}{4}z+\frac{24}{4}=\frac{1}{3}\left(z-12\right)
24 hosil qilish uchun 3 va 8 ni ko'paytirish.
\frac{3}{4}z+6=\frac{1}{3}\left(z-12\right)
6 ni olish uchun 24 ni 4 ga bo‘ling.
\frac{3}{4}z+6=\frac{1}{3}z+\frac{1}{3}\left(-12\right)
\frac{1}{3} ga z-12 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{4}z+6=\frac{1}{3}z+\frac{-12}{3}
\frac{-12}{3} hosil qilish uchun \frac{1}{3} va -12 ni ko'paytirish.
\frac{3}{4}z+6=\frac{1}{3}z-4
-4 ni olish uchun -12 ni 3 ga bo‘ling.
\frac{3}{4}z+6-\frac{1}{3}z=-4
Ikkala tarafdan \frac{1}{3}z ni ayirish.
\frac{5}{12}z+6=-4
\frac{5}{12}z ni olish uchun \frac{3}{4}z va -\frac{1}{3}z ni birlashtirish.
\frac{5}{12}z=-4-6
Ikkala tarafdan 6 ni ayirish.
\frac{5}{12}z=-10
-10 olish uchun -4 dan 6 ni ayirish.
z=-10\times \frac{12}{5}
Ikki tarafini \frac{12}{5} va teskari kasri \frac{5}{12} ga ko‘paytiring.
z=\frac{-10\times 12}{5}
-10\times \frac{12}{5} ni yagona kasrga aylantiring.
z=\frac{-120}{5}
-120 hosil qilish uchun -10 va 12 ni ko'paytirish.
z=-24
-24 ni olish uchun -120 ni 5 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}