y uchun yechish
y = \frac{20}{9} = 2\frac{2}{9} \approx 2,222222222
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{4}y+\frac{3}{4}\times 7+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
\frac{3}{4} ga y+7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{4}y+\frac{3\times 7}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
\frac{3}{4}\times 7 ni yagona kasrga aylantiring.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\left(3y-5\right)=\frac{9}{4}\left(2y-1\right)
21 hosil qilish uchun 3 va 7 ni ko'paytirish.
\frac{3}{4}y+\frac{21}{4}+\frac{1}{2}\times 3y+\frac{1}{2}\left(-5\right)=\frac{9}{4}\left(2y-1\right)
\frac{1}{2} ga 3y-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y+\frac{1}{2}\left(-5\right)=\frac{9}{4}\left(2y-1\right)
\frac{3}{2} hosil qilish uchun \frac{1}{2} va 3 ni ko'paytirish.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y+\frac{-5}{2}=\frac{9}{4}\left(2y-1\right)
\frac{-5}{2} hosil qilish uchun \frac{1}{2} va -5 ni ko'paytirish.
\frac{3}{4}y+\frac{21}{4}+\frac{3}{2}y-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
\frac{-5}{2} kasri manfiy belgini olib tashlash bilan -\frac{5}{2} sifatida qayta yozilishi mumkin.
\frac{9}{4}y+\frac{21}{4}-\frac{5}{2}=\frac{9}{4}\left(2y-1\right)
\frac{9}{4}y ni olish uchun \frac{3}{4}y va \frac{3}{2}y ni birlashtirish.
\frac{9}{4}y+\frac{21}{4}-\frac{10}{4}=\frac{9}{4}\left(2y-1\right)
4 va 2 ning eng kichik umumiy karralisi 4 ga teng. \frac{21}{4} va \frac{5}{2} ni 4 maxraj bilan kasrlarga aylantirib oling.
\frac{9}{4}y+\frac{21-10}{4}=\frac{9}{4}\left(2y-1\right)
\frac{21}{4} va \frac{10}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\left(2y-1\right)
11 olish uchun 21 dan 10 ni ayirish.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{4}\times 2y+\frac{9}{4}\left(-1\right)
\frac{9}{4} ga 2y-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{9}{4}y+\frac{11}{4}=\frac{9\times 2}{4}y+\frac{9}{4}\left(-1\right)
\frac{9}{4}\times 2 ni yagona kasrga aylantiring.
\frac{9}{4}y+\frac{11}{4}=\frac{18}{4}y+\frac{9}{4}\left(-1\right)
18 hosil qilish uchun 9 va 2 ni ko'paytirish.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y+\frac{9}{4}\left(-1\right)
\frac{18}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{9}{4}y+\frac{11}{4}=\frac{9}{2}y-\frac{9}{4}
-\frac{9}{4} hosil qilish uchun \frac{9}{4} va -1 ni ko'paytirish.
\frac{9}{4}y+\frac{11}{4}-\frac{9}{2}y=-\frac{9}{4}
Ikkala tarafdan \frac{9}{2}y ni ayirish.
-\frac{9}{4}y+\frac{11}{4}=-\frac{9}{4}
-\frac{9}{4}y ni olish uchun \frac{9}{4}y va -\frac{9}{2}y ni birlashtirish.
-\frac{9}{4}y=-\frac{9}{4}-\frac{11}{4}
Ikkala tarafdan \frac{11}{4} ni ayirish.
-\frac{9}{4}y=\frac{-9-11}{4}
-\frac{9}{4} va \frac{11}{4} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{9}{4}y=\frac{-20}{4}
-20 olish uchun -9 dan 11 ni ayirish.
-\frac{9}{4}y=-5
-5 ni olish uchun -20 ni 4 ga bo‘ling.
y=-5\left(-\frac{4}{9}\right)
Ikki tarafini -\frac{4}{9} va teskari kasri -\frac{9}{4} ga ko‘paytiring.
y=\frac{-5\left(-4\right)}{9}
-5\left(-\frac{4}{9}\right) ni yagona kasrga aylantiring.
y=\frac{20}{9}
20 hosil qilish uchun -5 va -4 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}