x uchun yechish
x = -\frac{29}{4} = -7\frac{1}{4} = -7,25
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{4}\left(\frac{4}{3}\times \frac{1}{2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
\frac{4}{3} ga \frac{1}{2}x-\frac{1}{4} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{4}\left(\frac{4\times 1}{3\times 2}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{4}{3} ni \frac{1}{2} ga ko‘paytiring.
\frac{3}{4}\left(\frac{4}{6}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
\frac{4\times 1}{3\times 2} kasridagi ko‘paytirishlarni bajaring.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4}{3}\left(-\frac{1}{4}\right)-8\right)=\frac{3}{2}x+1
\frac{4}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{3}{4}\left(\frac{2}{3}x+\frac{4\left(-1\right)}{3\times 4}-8\right)=\frac{3}{2}x+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{4}{3} ni -\frac{1}{4} ga ko‘paytiring.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1}{3}-8\right)=\frac{3}{2}x+1
Surat va maxrajdagi ikkala 4 ni qisqartiring.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-8\right)=\frac{3}{2}x+1
\frac{-1}{3} kasri manfiy belgini olib tashlash bilan -\frac{1}{3} sifatida qayta yozilishi mumkin.
\frac{3}{4}\left(\frac{2}{3}x-\frac{1}{3}-\frac{24}{3}\right)=\frac{3}{2}x+1
8 ni \frac{24}{3} kasrga o‘giring.
\frac{3}{4}\left(\frac{2}{3}x+\frac{-1-24}{3}\right)=\frac{3}{2}x+1
-\frac{1}{3} va \frac{24}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3}{4}\left(\frac{2}{3}x-\frac{25}{3}\right)=\frac{3}{2}x+1
-25 olish uchun -1 dan 24 ni ayirish.
\frac{3}{4}\times \frac{2}{3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
\frac{3}{4} ga \frac{2}{3}x-\frac{25}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3\times 2}{4\times 3}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{3}{4} ni \frac{2}{3} ga ko‘paytiring.
\frac{2}{4}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
Surat va maxrajdagi ikkala 3 ni qisqartiring.
\frac{1}{2}x+\frac{3}{4}\left(-\frac{25}{3}\right)=\frac{3}{2}x+1
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}x+\frac{3\left(-25\right)}{4\times 3}=\frac{3}{2}x+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{3}{4} ni -\frac{25}{3} ga ko‘paytiring.
\frac{1}{2}x+\frac{-25}{4}=\frac{3}{2}x+1
Surat va maxrajdagi ikkala 3 ni qisqartiring.
\frac{1}{2}x-\frac{25}{4}=\frac{3}{2}x+1
\frac{-25}{4} kasri manfiy belgini olib tashlash bilan -\frac{25}{4} sifatida qayta yozilishi mumkin.
\frac{1}{2}x-\frac{25}{4}-\frac{3}{2}x=1
Ikkala tarafdan \frac{3}{2}x ni ayirish.
-x-\frac{25}{4}=1
-x ni olish uchun \frac{1}{2}x va -\frac{3}{2}x ni birlashtirish.
-x=1+\frac{25}{4}
\frac{25}{4} ni ikki tarafga qo’shing.
-x=\frac{4}{4}+\frac{25}{4}
1 ni \frac{4}{4} kasrga o‘giring.
-x=\frac{4+25}{4}
\frac{4}{4} va \frac{25}{4} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-x=\frac{29}{4}
29 olish uchun 4 va 25'ni qo'shing.
x=-\frac{29}{4}
Ikkala tarafini -1 ga ko‘paytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}