Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{3\times 6a^{2}}{174a^{2}}+\frac{29\left(a-2\right)}{174a^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 29 va 6a^{2} ning eng kichik umumiy karralisi 174a^{2}. \frac{3}{29} ni \frac{6a^{2}}{6a^{2}} marotabaga ko'paytirish. \frac{a-2}{6a^{2}} ni \frac{29}{29} marotabaga ko'paytirish.
\frac{3\times 6a^{2}+29\left(a-2\right)}{174a^{2}}
\frac{3\times 6a^{2}}{174a^{2}} va \frac{29\left(a-2\right)}{174a^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{18a^{2}+29a-58}{174a^{2}}
3\times 6a^{2}+29\left(a-2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{18\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{174a^{2}}
\frac{18a^{2}+29a-58}{174a^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{3\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
Surat va maxrajdagi ikkala 6 ni qisqartiring.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
-\frac{1}{36}\sqrt{5017}-\frac{29}{36} teskarisini topish uchun har birining teskarisini toping.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
\frac{1}{36}\sqrt{5017}-\frac{29}{36} teskarisini topish uchun har birining teskarisini toping.
\frac{\left(3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
3 ga a+\frac{1}{36}\sqrt{5017}+\frac{29}{36} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\left(\sqrt{5017}\right)^{2}+\frac{841}{432}}{29a^{2}}
3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12} ga a-\frac{1}{36}\sqrt{5017}+\frac{29}{36} ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\times 5017+\frac{841}{432}}{29a^{2}}
\sqrt{5017} kvadrati – 5017.
\frac{3a^{2}+\frac{29}{6}a-\frac{5017}{432}+\frac{841}{432}}{29a^{2}}
-\frac{5017}{432} hosil qilish uchun -\frac{1}{432} va 5017 ni ko'paytirish.
\frac{3a^{2}+\frac{29}{6}a-\frac{29}{3}}{29a^{2}}
-\frac{29}{3} olish uchun -\frac{5017}{432} va \frac{841}{432}'ni qo'shing.
\frac{3\times 6a^{2}}{174a^{2}}+\frac{29\left(a-2\right)}{174a^{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 29 va 6a^{2} ning eng kichik umumiy karralisi 174a^{2}. \frac{3}{29} ni \frac{6a^{2}}{6a^{2}} marotabaga ko'paytirish. \frac{a-2}{6a^{2}} ni \frac{29}{29} marotabaga ko'paytirish.
\frac{3\times 6a^{2}+29\left(a-2\right)}{174a^{2}}
\frac{3\times 6a^{2}}{174a^{2}} va \frac{29\left(a-2\right)}{174a^{2}} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{18a^{2}+29a-58}{174a^{2}}
3\times 6a^{2}+29\left(a-2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{18\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{174a^{2}}
\frac{18a^{2}+29a-58}{174a^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{3\left(a-\left(-\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
Surat va maxrajdagi ikkala 6 ni qisqartiring.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\left(\frac{1}{36}\sqrt{5017}-\frac{29}{36}\right)\right)}{29a^{2}}
-\frac{1}{36}\sqrt{5017}-\frac{29}{36} teskarisini topish uchun har birining teskarisini toping.
\frac{3\left(a+\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
\frac{1}{36}\sqrt{5017}-\frac{29}{36} teskarisini topish uchun har birining teskarisini toping.
\frac{\left(3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12}\right)\left(a-\frac{1}{36}\sqrt{5017}+\frac{29}{36}\right)}{29a^{2}}
3 ga a+\frac{1}{36}\sqrt{5017}+\frac{29}{36} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\left(\sqrt{5017}\right)^{2}+\frac{841}{432}}{29a^{2}}
3a+\frac{1}{12}\sqrt{5017}+\frac{29}{12} ga a-\frac{1}{36}\sqrt{5017}+\frac{29}{36} ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\frac{3a^{2}+\frac{29}{6}a-\frac{1}{432}\times 5017+\frac{841}{432}}{29a^{2}}
\sqrt{5017} kvadrati – 5017.
\frac{3a^{2}+\frac{29}{6}a-\frac{5017}{432}+\frac{841}{432}}{29a^{2}}
-\frac{5017}{432} hosil qilish uchun -\frac{1}{432} va 5017 ni ko'paytirish.
\frac{3a^{2}+\frac{29}{6}a-\frac{29}{3}}{29a^{2}}
-\frac{29}{3} olish uchun -\frac{5017}{432} va \frac{841}{432}'ni qo'shing.