Baholash
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Omil
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Baham ko'rish
Klipbordga nusxa olish
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \alpha +1 va \beta +1 ning eng kichik umumiy karralisi \left(\alpha +1\right)\left(\beta +1\right). \frac{3\beta }{\alpha +1} ni \frac{\beta +1}{\beta +1} marotabaga ko'paytirish. \frac{3\alpha }{\beta +1} ni \frac{\alpha +1}{\alpha +1} marotabaga ko'paytirish.
\frac{3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} va \frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\left(\alpha +1\right)\left(\beta +1\right)}
3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\alpha \beta +\alpha +\beta +1}
\left(\alpha +1\right)\left(\beta +1\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}