Baholash
\frac{1}{2}+\frac{1}{2}i=0,5+0,5i
Ashyoviy qism
\frac{1}{2} = 0,5
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(3+2i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 5+i.
\frac{\left(3+2i\right)\left(5+i\right)}{5^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+2i\right)\left(5+i\right)}{26}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{3\times 5+3i+2i\times 5+2i^{2}}{26}
Binomlarni ko‘paytirgandek 3+2i va 5+i murakkab sonlarni ko‘paytiring.
\frac{3\times 5+3i+2i\times 5+2\left(-1\right)}{26}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{15+3i+10i-2}{26}
3\times 5+3i+2i\times 5+2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{15-2+\left(3+10\right)i}{26}
15+3i+10i-2 ichida real va mavhum qismlarni birlashtiring.
\frac{13+13i}{26}
15-2+\left(3+10\right)i ichida qo‘shishlarni bajaring.
\frac{1}{2}+\frac{1}{2}i
\frac{1}{2}+\frac{1}{2}i ni olish uchun 13+13i ni 26 ga bo‘ling.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{\left(5-i\right)\left(5+i\right)})
\frac{3+2i}{5-i}ning surat va maxrajini murakkab tutash maxraj 5+i bilan ko‘paytiring.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{5^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3+2i\right)\left(5+i\right)}{26})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{3\times 5+3i+2i\times 5+2i^{2}}{26})
Binomlarni ko‘paytirgandek 3+2i va 5+i murakkab sonlarni ko‘paytiring.
Re(\frac{3\times 5+3i+2i\times 5+2\left(-1\right)}{26})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{15+3i+10i-2}{26})
3\times 5+3i+2i\times 5+2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{15-2+\left(3+10\right)i}{26})
15+3i+10i-2 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{13+13i}{26})
15-2+\left(3+10\right)i ichida qo‘shishlarni bajaring.
Re(\frac{1}{2}+\frac{1}{2}i)
\frac{1}{2}+\frac{1}{2}i ni olish uchun 13+13i ni 26 ga bo‘ling.
\frac{1}{2}
\frac{1}{2}+\frac{1}{2}i ning real qismi – \frac{1}{2}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}