Baholash
-\sqrt{15}-4\approx -7,872983346
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{\left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right)}
\frac{3+\sqrt{15}}{3-\sqrt{15}} maxrajini 3+\sqrt{15} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{3^{2}-\left(\sqrt{15}\right)^{2}}
Hisoblang: \left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{9-15}
3 kvadratini chiqarish. \sqrt{15} kvadratini chiqarish.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{-6}
-6 olish uchun 9 dan 15 ni ayirish.
\frac{\left(3+\sqrt{15}\right)^{2}}{-6}
\left(3+\sqrt{15}\right)^{2} hosil qilish uchun 3+\sqrt{15} va 3+\sqrt{15} ni ko'paytirish.
\frac{9+6\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-6}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+\sqrt{15}\right)^{2} kengaytirilishi uchun ishlating.
\frac{9+6\sqrt{15}+15}{-6}
\sqrt{15} kvadrati – 15.
\frac{24+6\sqrt{15}}{-6}
24 olish uchun 9 va 15'ni qo'shing.
-4-\sqrt{15}
-4-\sqrt{15} natijani olish uchun 24+6\sqrt{15} ning har bir ifodasini -6 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}