Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{\left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right)}
\frac{3+\sqrt{15}}{3-\sqrt{15}} maxrajini 3+\sqrt{15} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{3^{2}-\left(\sqrt{15}\right)^{2}}
Hisoblang: \left(3-\sqrt{15}\right)\left(3+\sqrt{15}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{9-15}
3 kvadratini chiqarish. \sqrt{15} kvadratini chiqarish.
\frac{\left(3+\sqrt{15}\right)\left(3+\sqrt{15}\right)}{-6}
-6 olish uchun 9 dan 15 ni ayirish.
\frac{\left(3+\sqrt{15}\right)^{2}}{-6}
\left(3+\sqrt{15}\right)^{2} hosil qilish uchun 3+\sqrt{15} va 3+\sqrt{15} ni ko'paytirish.
\frac{9+6\sqrt{15}+\left(\sqrt{15}\right)^{2}}{-6}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(3+\sqrt{15}\right)^{2} kengaytirilishi uchun ishlating.
\frac{9+6\sqrt{15}+15}{-6}
\sqrt{15} kvadrati – 15.
\frac{24+6\sqrt{15}}{-6}
24 olish uchun 9 va 15'ni qo'shing.
-4-\sqrt{15}
-4-\sqrt{15} natijani olish uchun 24+6\sqrt{15} ning har bir ifodasini -6 ga bo‘ling.