Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

26x\left(2x-6\right)=96x+3x^{2}-18
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
52x^{2}-156x=96x+3x^{2}-18
26x ga 2x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
52x^{2}-156x-96x=3x^{2}-18
Ikkala tarafdan 96x ni ayirish.
52x^{2}-252x=3x^{2}-18
-252x ni olish uchun -156x va -96x ni birlashtirish.
52x^{2}-252x-3x^{2}=-18
Ikkala tarafdan 3x^{2} ni ayirish.
49x^{2}-252x=-18
49x^{2} ni olish uchun 52x^{2} va -3x^{2} ni birlashtirish.
49x^{2}-252x+18=0
18 ni ikki tarafga qo’shing.
x=\frac{-\left(-252\right)±\sqrt{\left(-252\right)^{2}-4\times 49\times 18}}{2\times 49}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 49 ni a, -252 ni b va 18 ni c bilan almashtiring.
x=\frac{-\left(-252\right)±\sqrt{63504-4\times 49\times 18}}{2\times 49}
-252 kvadratini chiqarish.
x=\frac{-\left(-252\right)±\sqrt{63504-196\times 18}}{2\times 49}
-4 ni 49 marotabaga ko'paytirish.
x=\frac{-\left(-252\right)±\sqrt{63504-3528}}{2\times 49}
-196 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-252\right)±\sqrt{59976}}{2\times 49}
63504 ni -3528 ga qo'shish.
x=\frac{-\left(-252\right)±42\sqrt{34}}{2\times 49}
59976 ning kvadrat ildizini chiqarish.
x=\frac{252±42\sqrt{34}}{2\times 49}
-252 ning teskarisi 252 ga teng.
x=\frac{252±42\sqrt{34}}{98}
2 ni 49 marotabaga ko'paytirish.
x=\frac{42\sqrt{34}+252}{98}
x=\frac{252±42\sqrt{34}}{98} tenglamasini yeching, bunda ± musbat. 252 ni 42\sqrt{34} ga qo'shish.
x=\frac{3\sqrt{34}+18}{7}
252+42\sqrt{34} ni 98 ga bo'lish.
x=\frac{252-42\sqrt{34}}{98}
x=\frac{252±42\sqrt{34}}{98} tenglamasini yeching, bunda ± manfiy. 252 dan 42\sqrt{34} ni ayirish.
x=\frac{18-3\sqrt{34}}{7}
252-42\sqrt{34} ni 98 ga bo'lish.
x=\frac{3\sqrt{34}+18}{7} x=\frac{18-3\sqrt{34}}{7}
Tenglama yechildi.
26x\left(2x-6\right)=96x+3x^{2}-18
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
52x^{2}-156x=96x+3x^{2}-18
26x ga 2x-6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
52x^{2}-156x-96x=3x^{2}-18
Ikkala tarafdan 96x ni ayirish.
52x^{2}-252x=3x^{2}-18
-252x ni olish uchun -156x va -96x ni birlashtirish.
52x^{2}-252x-3x^{2}=-18
Ikkala tarafdan 3x^{2} ni ayirish.
49x^{2}-252x=-18
49x^{2} ni olish uchun 52x^{2} va -3x^{2} ni birlashtirish.
\frac{49x^{2}-252x}{49}=-\frac{18}{49}
Ikki tarafini 49 ga bo‘ling.
x^{2}+\left(-\frac{252}{49}\right)x=-\frac{18}{49}
49 ga bo'lish 49 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{36}{7}x=-\frac{18}{49}
\frac{-252}{49} ulushini 7 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{36}{7}x+\left(-\frac{18}{7}\right)^{2}=-\frac{18}{49}+\left(-\frac{18}{7}\right)^{2}
-\frac{36}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{18}{7} olish uchun. Keyin, -\frac{18}{7} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{-18+324}{49}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{18}{7} kvadratini chiqarish.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{306}{49}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{18}{49} ni \frac{324}{49} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{18}{7}\right)^{2}=\frac{306}{49}
x^{2}-\frac{36}{7}x+\frac{324}{49} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{18}{7}\right)^{2}}=\sqrt{\frac{306}{49}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{18}{7}=\frac{3\sqrt{34}}{7} x-\frac{18}{7}=-\frac{3\sqrt{34}}{7}
Qisqartirish.
x=\frac{3\sqrt{34}+18}{7} x=\frac{18-3\sqrt{34}}{7}
\frac{18}{7} ni tenglamaning ikkala tarafiga qo'shish.