Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

25x^{2}-4=0
Ikkala tarafini 4 ga ko‘paytiring.
\left(5x-2\right)\left(5x+2\right)=0
Hisoblang: 25x^{2}-4. 25x^{2}-4 ni \left(5x\right)^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{5} x=-\frac{2}{5}
Tenglamani yechish uchun 5x-2=0 va 5x+2=0 ni yeching.
\frac{25}{4}x^{2}=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=1\times \frac{4}{25}
Ikki tarafini \frac{4}{25} va teskari kasri \frac{25}{4} ga ko‘paytiring.
x^{2}=\frac{4}{25}
\frac{4}{25} hosil qilish uchun 1 va \frac{4}{25} ni ko'paytirish.
x=\frac{2}{5} x=-\frac{2}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\frac{25}{4}x^{2}-1=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{25}{4}\left(-1\right)}}{2\times \frac{25}{4}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{25}{4} ni a, 0 ni b va -1 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times \frac{25}{4}\left(-1\right)}}{2\times \frac{25}{4}}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-25\left(-1\right)}}{2\times \frac{25}{4}}
-4 ni \frac{25}{4} marotabaga ko'paytirish.
x=\frac{0±\sqrt{25}}{2\times \frac{25}{4}}
-25 ni -1 marotabaga ko'paytirish.
x=\frac{0±5}{2\times \frac{25}{4}}
25 ning kvadrat ildizini chiqarish.
x=\frac{0±5}{\frac{25}{2}}
2 ni \frac{25}{4} marotabaga ko'paytirish.
x=\frac{2}{5}
x=\frac{0±5}{\frac{25}{2}} tenglamasini yeching, bunda ± musbat. 5 ni \frac{25}{2} ga bo'lish 5 ga k'paytirish \frac{25}{2} ga qaytarish.
x=-\frac{2}{5}
x=\frac{0±5}{\frac{25}{2}} tenglamasini yeching, bunda ± manfiy. -5 ni \frac{25}{2} ga bo'lish -5 ga k'paytirish \frac{25}{2} ga qaytarish.
x=\frac{2}{5} x=-\frac{2}{5}
Tenglama yechildi.