Baholash
-\frac{r^{2}}{9}+\frac{25}{4}
Omil
\frac{\left(-2r-15\right)\left(2r-15\right)}{36}
Baham ko'rish
Klipbordga nusxa olish
\frac{25\times 9}{36}-\frac{4r^{2}}{36}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 4 va 9 ning eng kichik umumiy karralisi 36. \frac{25}{4} ni \frac{9}{9} marotabaga ko'paytirish. \frac{r^{2}}{9} ni \frac{4}{4} marotabaga ko'paytirish.
\frac{25\times 9-4r^{2}}{36}
\frac{25\times 9}{36} va \frac{4r^{2}}{36} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{225-4r^{2}}{36}
25\times 9-4r^{2} ichidagi ko‘paytirishlarni bajaring.
\frac{225-4r^{2}}{36}
\frac{1}{36} omili.
\left(15-2r\right)\left(15+2r\right)
Hisoblang: 225-4r^{2}. 225-4r^{2} ni 15^{2}-\left(2r\right)^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-2r+15\right)\left(2r+15\right)
Shartlarni qayta saralash.
\frac{\left(-2r+15\right)\left(2r+15\right)}{36}
Toʻliq ajratilgan ifodani qaytadan yozing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}