Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+15\right)\times 2400-x\times 50=9x\left(x+15\right)
x qiymati -15,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+15\right) ga, x,x+15 ning eng kichik karralisiga ko‘paytiring.
2400x+36000-x\times 50=9x\left(x+15\right)
x+15 ga 2400 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2400x+36000-x\times 50=9x^{2}+135x
9x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2400x+36000-x\times 50-9x^{2}=135x
Ikkala tarafdan 9x^{2} ni ayirish.
2400x+36000-x\times 50-9x^{2}-135x=0
Ikkala tarafdan 135x ni ayirish.
2265x+36000-x\times 50-9x^{2}=0
2265x ni olish uchun 2400x va -135x ni birlashtirish.
2265x+36000-50x-9x^{2}=0
-50 hosil qilish uchun -1 va 50 ni ko'paytirish.
2215x+36000-9x^{2}=0
2215x ni olish uchun 2265x va -50x ni birlashtirish.
-9x^{2}+2215x+36000=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2215±\sqrt{2215^{2}-4\left(-9\right)\times 36000}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, 2215 ni b va 36000 ni c bilan almashtiring.
x=\frac{-2215±\sqrt{4906225-4\left(-9\right)\times 36000}}{2\left(-9\right)}
2215 kvadratini chiqarish.
x=\frac{-2215±\sqrt{4906225+36\times 36000}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-2215±\sqrt{4906225+1296000}}{2\left(-9\right)}
36 ni 36000 marotabaga ko'paytirish.
x=\frac{-2215±\sqrt{6202225}}{2\left(-9\right)}
4906225 ni 1296000 ga qo'shish.
x=\frac{-2215±5\sqrt{248089}}{2\left(-9\right)}
6202225 ning kvadrat ildizini chiqarish.
x=\frac{-2215±5\sqrt{248089}}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{5\sqrt{248089}-2215}{-18}
x=\frac{-2215±5\sqrt{248089}}{-18} tenglamasini yeching, bunda ± musbat. -2215 ni 5\sqrt{248089} ga qo'shish.
x=\frac{2215-5\sqrt{248089}}{18}
-2215+5\sqrt{248089} ni -18 ga bo'lish.
x=\frac{-5\sqrt{248089}-2215}{-18}
x=\frac{-2215±5\sqrt{248089}}{-18} tenglamasini yeching, bunda ± manfiy. -2215 dan 5\sqrt{248089} ni ayirish.
x=\frac{5\sqrt{248089}+2215}{18}
-2215-5\sqrt{248089} ni -18 ga bo'lish.
x=\frac{2215-5\sqrt{248089}}{18} x=\frac{5\sqrt{248089}+2215}{18}
Tenglama yechildi.
\left(x+15\right)\times 2400-x\times 50=9x\left(x+15\right)
x qiymati -15,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+15\right) ga, x,x+15 ning eng kichik karralisiga ko‘paytiring.
2400x+36000-x\times 50=9x\left(x+15\right)
x+15 ga 2400 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2400x+36000-x\times 50=9x^{2}+135x
9x ga x+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2400x+36000-x\times 50-9x^{2}=135x
Ikkala tarafdan 9x^{2} ni ayirish.
2400x+36000-x\times 50-9x^{2}-135x=0
Ikkala tarafdan 135x ni ayirish.
2265x+36000-x\times 50-9x^{2}=0
2265x ni olish uchun 2400x va -135x ni birlashtirish.
2265x-x\times 50-9x^{2}=-36000
Ikkala tarafdan 36000 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
2265x-50x-9x^{2}=-36000
-50 hosil qilish uchun -1 va 50 ni ko'paytirish.
2215x-9x^{2}=-36000
2215x ni olish uchun 2265x va -50x ni birlashtirish.
-9x^{2}+2215x=-36000
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-9x^{2}+2215x}{-9}=-\frac{36000}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\frac{2215}{-9}x=-\frac{36000}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{2215}{9}x=-\frac{36000}{-9}
2215 ni -9 ga bo'lish.
x^{2}-\frac{2215}{9}x=4000
-36000 ni -9 ga bo'lish.
x^{2}-\frac{2215}{9}x+\left(-\frac{2215}{18}\right)^{2}=4000+\left(-\frac{2215}{18}\right)^{2}
-\frac{2215}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2215}{18} olish uchun. Keyin, -\frac{2215}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{2215}{9}x+\frac{4906225}{324}=4000+\frac{4906225}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2215}{18} kvadratini chiqarish.
x^{2}-\frac{2215}{9}x+\frac{4906225}{324}=\frac{6202225}{324}
4000 ni \frac{4906225}{324} ga qo'shish.
\left(x-\frac{2215}{18}\right)^{2}=\frac{6202225}{324}
x^{2}-\frac{2215}{9}x+\frac{4906225}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{2215}{18}\right)^{2}}=\sqrt{\frac{6202225}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{2215}{18}=\frac{5\sqrt{248089}}{18} x-\frac{2215}{18}=-\frac{5\sqrt{248089}}{18}
Qisqartirish.
x=\frac{5\sqrt{248089}+2215}{18} x=\frac{2215-5\sqrt{248089}}{18}
\frac{2215}{18} ni tenglamaning ikkala tarafiga qo'shish.