x uchun yechish
x=-54
x=6
Grafik
Baham ko'rish
Klipbordga nusxa olish
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
x qiymati -18,18 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-18\right)\left(x+18\right) ga, 18-x,18+x ning eng kichik karralisiga ko‘paytiring.
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
18+x teskarisini topish uchun har birining teskarisini toping.
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
-18-x ga 24 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
x-18 ga 24 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
24x-432 teskarisini topish uchun har birining teskarisini toping.
-432-48x+432=\left(x-18\right)\left(x+18\right)
-48x ni olish uchun -24x va -24x ni birlashtirish.
-48x=\left(x-18\right)\left(x+18\right)
0 olish uchun -432 va 432'ni qo'shing.
-48x=x^{2}-324
Hisoblang: \left(x-18\right)\left(x+18\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 18 kvadratini chiqarish.
-48x-x^{2}=-324
Ikkala tarafdan x^{2} ni ayirish.
-48x-x^{2}+324=0
324 ni ikki tarafga qo’shing.
-x^{2}-48x+324=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-1\right)\times 324}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -48 ni b va 324 ni c bilan almashtiring.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-1\right)\times 324}}{2\left(-1\right)}
-48 kvadratini chiqarish.
x=\frac{-\left(-48\right)±\sqrt{2304+4\times 324}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-48\right)±\sqrt{2304+1296}}{2\left(-1\right)}
4 ni 324 marotabaga ko'paytirish.
x=\frac{-\left(-48\right)±\sqrt{3600}}{2\left(-1\right)}
2304 ni 1296 ga qo'shish.
x=\frac{-\left(-48\right)±60}{2\left(-1\right)}
3600 ning kvadrat ildizini chiqarish.
x=\frac{48±60}{2\left(-1\right)}
-48 ning teskarisi 48 ga teng.
x=\frac{48±60}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{108}{-2}
x=\frac{48±60}{-2} tenglamasini yeching, bunda ± musbat. 48 ni 60 ga qo'shish.
x=-54
108 ni -2 ga bo'lish.
x=-\frac{12}{-2}
x=\frac{48±60}{-2} tenglamasini yeching, bunda ± manfiy. 48 dan 60 ni ayirish.
x=6
-12 ni -2 ga bo'lish.
x=-54 x=6
Tenglama yechildi.
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
x qiymati -18,18 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-18\right)\left(x+18\right) ga, 18-x,18+x ning eng kichik karralisiga ko‘paytiring.
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
18+x teskarisini topish uchun har birining teskarisini toping.
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
-18-x ga 24 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
x-18 ga 24 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
24x-432 teskarisini topish uchun har birining teskarisini toping.
-432-48x+432=\left(x-18\right)\left(x+18\right)
-48x ni olish uchun -24x va -24x ni birlashtirish.
-48x=\left(x-18\right)\left(x+18\right)
0 olish uchun -432 va 432'ni qo'shing.
-48x=x^{2}-324
Hisoblang: \left(x-18\right)\left(x+18\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 18 kvadratini chiqarish.
-48x-x^{2}=-324
Ikkala tarafdan x^{2} ni ayirish.
-x^{2}-48x=-324
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-48x}{-1}=-\frac{324}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{48}{-1}\right)x=-\frac{324}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+48x=-\frac{324}{-1}
-48 ni -1 ga bo'lish.
x^{2}+48x=324
-324 ni -1 ga bo'lish.
x^{2}+48x+24^{2}=324+24^{2}
48 ni bo‘lish, x shartining koeffitsienti, 2 ga 24 olish uchun. Keyin, 24 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+48x+576=324+576
24 kvadratini chiqarish.
x^{2}+48x+576=900
324 ni 576 ga qo'shish.
\left(x+24\right)^{2}=900
x^{2}+48x+576 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+24\right)^{2}}=\sqrt{900}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+24=30 x+24=-30
Qisqartirish.
x=6 x=-54
Tenglamaning ikkala tarafidan 24 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}