x uchun yechish (complex solution)
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
y\neq -2i\text{ and }y\neq 2i
x uchun yechish
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
y uchun yechish (complex solution)
\left\{\begin{matrix}\\y=\frac{\sqrt{848x-143}+1}{6}\text{, }&\text{unconditionally}\\y=\frac{-\sqrt{848x-143}+1}{6}\text{, }&x\neq \frac{3}{106}i\text{ and }x\neq -\frac{3}{106}i\end{matrix}\right,
y uchun yechish
y=\frac{-\sqrt{848x-143}+1}{6}
y=\frac{\sqrt{848x-143}+1}{6}\text{, }x\geq \frac{143}{848}
Grafik
Baham ko'rish
Klipbordga nusxa olish
212x+3y=9\left(y-2i\right)\left(y+2i\right)
Tenglamaning ikkala tarafini \left(y-2i\right)\left(y+2i\right) ga ko'paytirish.
212x+3y=\left(9y-18i\right)\left(y+2i\right)
9 ga y-2i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
212x+3y=9y^{2}+36
9y-18i ga y+2i ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
212x=9y^{2}+36-3y
Ikkala tarafdan 3y ni ayirish.
212x=9y^{2}-3y+36
Tenglama standart shaklda.
\frac{212x}{212}=\frac{9y^{2}-3y+36}{212}
Ikki tarafini 212 ga bo‘ling.
x=\frac{9y^{2}-3y+36}{212}
212 ga bo'lish 212 ga ko'paytirishni bekor qiladi.
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
9y^{2}+36-3y ni 212 ga bo'lish.
212x+3y=9\left(y^{2}+4\right)
Tenglamaning ikkala tarafini y^{2}+4 ga ko'paytirish.
212x+3y=9y^{2}+36
9 ga y^{2}+4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
212x=9y^{2}+36-3y
Ikkala tarafdan 3y ni ayirish.
212x=9y^{2}-3y+36
Tenglama standart shaklda.
\frac{212x}{212}=\frac{9y^{2}-3y+36}{212}
Ikki tarafini 212 ga bo‘ling.
x=\frac{9y^{2}-3y+36}{212}
212 ga bo'lish 212 ga ko'paytirishni bekor qiladi.
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
9y^{2}+36-3y ni 212 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}