x uchun yechish
x=-\frac{2}{11}\approx -0,181818182
x=6
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\left(x-2\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x qiymati -1,0,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-2\right)\left(x+1\right) ga, x+1,x-2,x ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}-2x\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x^{2}-2x ga 21 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=\left(x^{2}+x\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=16x^{2}+16x-\left(x-2\right)\left(x+1\right)\times 6
x^{2}+x ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=16x^{2}+16x-\left(x^{2}-x-2\right)\times 6
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
21x^{2}-42x=16x^{2}+16x-\left(6x^{2}-6x-12\right)
x^{2}-x-2 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=16x^{2}+16x-6x^{2}+6x+12
6x^{2}-6x-12 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-42x=10x^{2}+16x+6x+12
10x^{2} ni olish uchun 16x^{2} va -6x^{2} ni birlashtirish.
21x^{2}-42x=10x^{2}+22x+12
22x ni olish uchun 16x va 6x ni birlashtirish.
21x^{2}-42x-10x^{2}=22x+12
Ikkala tarafdan 10x^{2} ni ayirish.
11x^{2}-42x=22x+12
11x^{2} ni olish uchun 21x^{2} va -10x^{2} ni birlashtirish.
11x^{2}-42x-22x=12
Ikkala tarafdan 22x ni ayirish.
11x^{2}-64x=12
-64x ni olish uchun -42x va -22x ni birlashtirish.
11x^{2}-64x-12=0
Ikkala tarafdan 12 ni ayirish.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 11\left(-12\right)}}{2\times 11}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 11 ni a, -64 ni b va -12 ni c bilan almashtiring.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 11\left(-12\right)}}{2\times 11}
-64 kvadratini chiqarish.
x=\frac{-\left(-64\right)±\sqrt{4096-44\left(-12\right)}}{2\times 11}
-4 ni 11 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{4096+528}}{2\times 11}
-44 ni -12 marotabaga ko'paytirish.
x=\frac{-\left(-64\right)±\sqrt{4624}}{2\times 11}
4096 ni 528 ga qo'shish.
x=\frac{-\left(-64\right)±68}{2\times 11}
4624 ning kvadrat ildizini chiqarish.
x=\frac{64±68}{2\times 11}
-64 ning teskarisi 64 ga teng.
x=\frac{64±68}{22}
2 ni 11 marotabaga ko'paytirish.
x=\frac{132}{22}
x=\frac{64±68}{22} tenglamasini yeching, bunda ± musbat. 64 ni 68 ga qo'shish.
x=6
132 ni 22 ga bo'lish.
x=-\frac{4}{22}
x=\frac{64±68}{22} tenglamasini yeching, bunda ± manfiy. 64 dan 68 ni ayirish.
x=-\frac{2}{11}
\frac{-4}{22} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=6 x=-\frac{2}{11}
Tenglama yechildi.
x\left(x-2\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x qiymati -1,0,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x-2\right)\left(x+1\right) ga, x+1,x-2,x ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}-2x\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x^{2}-2x ga 21 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=\left(x^{2}+x\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
x ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=16x^{2}+16x-\left(x-2\right)\left(x+1\right)\times 6
x^{2}+x ga 16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=16x^{2}+16x-\left(x^{2}-x-2\right)\times 6
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
21x^{2}-42x=16x^{2}+16x-\left(6x^{2}-6x-12\right)
x^{2}-x-2 ga 6 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
21x^{2}-42x=16x^{2}+16x-6x^{2}+6x+12
6x^{2}-6x-12 teskarisini topish uchun har birining teskarisini toping.
21x^{2}-42x=10x^{2}+16x+6x+12
10x^{2} ni olish uchun 16x^{2} va -6x^{2} ni birlashtirish.
21x^{2}-42x=10x^{2}+22x+12
22x ni olish uchun 16x va 6x ni birlashtirish.
21x^{2}-42x-10x^{2}=22x+12
Ikkala tarafdan 10x^{2} ni ayirish.
11x^{2}-42x=22x+12
11x^{2} ni olish uchun 21x^{2} va -10x^{2} ni birlashtirish.
11x^{2}-42x-22x=12
Ikkala tarafdan 22x ni ayirish.
11x^{2}-64x=12
-64x ni olish uchun -42x va -22x ni birlashtirish.
\frac{11x^{2}-64x}{11}=\frac{12}{11}
Ikki tarafini 11 ga bo‘ling.
x^{2}-\frac{64}{11}x=\frac{12}{11}
11 ga bo'lish 11 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{64}{11}x+\left(-\frac{32}{11}\right)^{2}=\frac{12}{11}+\left(-\frac{32}{11}\right)^{2}
-\frac{64}{11} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{32}{11} olish uchun. Keyin, -\frac{32}{11} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{64}{11}x+\frac{1024}{121}=\frac{12}{11}+\frac{1024}{121}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{32}{11} kvadratini chiqarish.
x^{2}-\frac{64}{11}x+\frac{1024}{121}=\frac{1156}{121}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{12}{11} ni \frac{1024}{121} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{32}{11}\right)^{2}=\frac{1156}{121}
x^{2}-\frac{64}{11}x+\frac{1024}{121} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{32}{11}\right)^{2}}=\sqrt{\frac{1156}{121}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{32}{11}=\frac{34}{11} x-\frac{32}{11}=-\frac{34}{11}
Qisqartirish.
x=6 x=-\frac{2}{11}
\frac{32}{11} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}