Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\times 208+x\left(x+16\right)\times 2=\left(x+16\right)\times 216
x qiymati -16,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+16\right) ga, x+16,x ning eng kichik karralisiga ko‘paytiring.
x\times 208+\left(x^{2}+16x\right)\times 2=\left(x+16\right)\times 216
x ga x+16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\times 208+2x^{2}+32x=\left(x+16\right)\times 216
x^{2}+16x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
240x+2x^{2}=\left(x+16\right)\times 216
240x ni olish uchun x\times 208 va 32x ni birlashtirish.
240x+2x^{2}=216x+3456
x+16 ga 216 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
240x+2x^{2}-216x=3456
Ikkala tarafdan 216x ni ayirish.
24x+2x^{2}=3456
24x ni olish uchun 240x va -216x ni birlashtirish.
24x+2x^{2}-3456=0
Ikkala tarafdan 3456 ni ayirish.
2x^{2}+24x-3456=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-24±\sqrt{24^{2}-4\times 2\left(-3456\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 24 ni b va -3456 ni c bilan almashtiring.
x=\frac{-24±\sqrt{576-4\times 2\left(-3456\right)}}{2\times 2}
24 kvadratini chiqarish.
x=\frac{-24±\sqrt{576-8\left(-3456\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-24±\sqrt{576+27648}}{2\times 2}
-8 ni -3456 marotabaga ko'paytirish.
x=\frac{-24±\sqrt{28224}}{2\times 2}
576 ni 27648 ga qo'shish.
x=\frac{-24±168}{2\times 2}
28224 ning kvadrat ildizini chiqarish.
x=\frac{-24±168}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{144}{4}
x=\frac{-24±168}{4} tenglamasini yeching, bunda ± musbat. -24 ni 168 ga qo'shish.
x=36
144 ni 4 ga bo'lish.
x=-\frac{192}{4}
x=\frac{-24±168}{4} tenglamasini yeching, bunda ± manfiy. -24 dan 168 ni ayirish.
x=-48
-192 ni 4 ga bo'lish.
x=36 x=-48
Tenglama yechildi.
x\times 208+x\left(x+16\right)\times 2=\left(x+16\right)\times 216
x qiymati -16,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+16\right) ga, x+16,x ning eng kichik karralisiga ko‘paytiring.
x\times 208+\left(x^{2}+16x\right)\times 2=\left(x+16\right)\times 216
x ga x+16 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\times 208+2x^{2}+32x=\left(x+16\right)\times 216
x^{2}+16x ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
240x+2x^{2}=\left(x+16\right)\times 216
240x ni olish uchun x\times 208 va 32x ni birlashtirish.
240x+2x^{2}=216x+3456
x+16 ga 216 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
240x+2x^{2}-216x=3456
Ikkala tarafdan 216x ni ayirish.
24x+2x^{2}=3456
24x ni olish uchun 240x va -216x ni birlashtirish.
2x^{2}+24x=3456
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{2x^{2}+24x}{2}=\frac{3456}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{24}{2}x=\frac{3456}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+12x=\frac{3456}{2}
24 ni 2 ga bo'lish.
x^{2}+12x=1728
3456 ni 2 ga bo'lish.
x^{2}+12x+6^{2}=1728+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=1728+36
6 kvadratini chiqarish.
x^{2}+12x+36=1764
1728 ni 36 ga qo'shish.
\left(x+6\right)^{2}=1764
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{1764}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=42 x+6=-42
Qisqartirish.
x=36 x=-48
Tenglamaning ikkala tarafidan 6 ni ayirish.