r uchun yechish
r=-\frac{20}{x^{\frac{3}{2}}+x-22}
x\neq \frac{\sqrt[3]{66\sqrt{9735}+6337}+\sqrt[3]{6337-66\sqrt{9735}}+1}{3}\text{ and }x\geq 0
Baham ko'rish
Klipbordga nusxa olish
20+x\sqrt{x}r+rx=22r
r qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini r ga ko'paytirish.
20+x\sqrt{x}r+rx-22r=0
Ikkala tarafdan 22r ni ayirish.
x\sqrt{x}r+rx-22r=-20
Ikkala tarafdan 20 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\left(x\sqrt{x}+x-22\right)r=-20
r'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(\sqrt{x}x+x-22\right)r=-20
Tenglama standart shaklda.
\frac{\left(\sqrt{x}x+x-22\right)r}{\sqrt{x}x+x-22}=-\frac{20}{\sqrt{x}x+x-22}
Ikki tarafini x\sqrt{x}+x-22 ga bo‘ling.
r=-\frac{20}{\sqrt{x}x+x-22}
x\sqrt{x}+x-22 ga bo'lish x\sqrt{x}+x-22 ga ko'paytirishni bekor qiladi.
r=-\frac{20}{x^{\frac{3}{2}}+x-22}
-20 ni x\sqrt{x}+x-22 ga bo'lish.
r=-\frac{20}{x^{\frac{3}{2}}+x-22}\text{, }r\neq 0
r qiymati 0 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}