Omil
-\frac{\left(\sqrt{5}+15\right)x}{220}
Baholash
-\frac{\left(\sqrt{5}+15\right)x}{220}
Grafik
Baham ko'rish
Klipbordga nusxa olish
factor(\frac{x}{\sqrt{5}-15})
x ni olish uchun 2x va -x ni birlashtirish.
factor(\frac{x\left(\sqrt{5}+15\right)}{\left(\sqrt{5}-15\right)\left(\sqrt{5}+15\right)})
\frac{x}{\sqrt{5}-15} maxrajini \sqrt{5}+15 orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
factor(\frac{x\left(\sqrt{5}+15\right)}{\left(\sqrt{5}\right)^{2}-15^{2}})
Hisoblang: \left(\sqrt{5}-15\right)\left(\sqrt{5}+15\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
factor(\frac{x\left(\sqrt{5}+15\right)}{5-225})
\sqrt{5} kvadratini chiqarish. 15 kvadratini chiqarish.
factor(\frac{x\left(\sqrt{5}+15\right)}{-220})
-220 olish uchun 5 dan 225 ni ayirish.
factor(\frac{x\sqrt{5}+15x}{-220})
x ga \sqrt{5}+15 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(\sqrt{5}+15\right)
Hisoblang: x\sqrt{5}+15x. x omili.
-\frac{x\left(\sqrt{5}+15\right)}{220}
Toʻliq ajratilgan ifodani qaytadan yozing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}