x uchun yechish
x=5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
x qiymati -1,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x+1\right) ga, x-4,x+1,\left(x-4\right)\left(x+1\right) ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
x+1 ga 2x-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
x-4 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-x^{2}+2x+8=x+6
x^{2}-2x-8 teskarisini topish uchun har birining teskarisini toping.
x^{2}-5x-7+2x+8=x+6
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-3x-7+8=x+6
-3x ni olish uchun -5x va 2x ni birlashtirish.
x^{2}-3x+1=x+6
1 olish uchun -7 va 8'ni qo'shing.
x^{2}-3x+1-x=6
Ikkala tarafdan x ni ayirish.
x^{2}-4x+1=6
-4x ni olish uchun -3x va -x ni birlashtirish.
x^{2}-4x+1-6=0
Ikkala tarafdan 6 ni ayirish.
x^{2}-4x-5=0
-5 olish uchun 1 dan 6 ni ayirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
16 ni 20 ga qo'shish.
x=\frac{-\left(-4\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
x=\frac{4±6}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{10}{2}
x=\frac{4±6}{2} tenglamasini yeching, bunda ± musbat. 4 ni 6 ga qo'shish.
x=5
10 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{4±6}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 6 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=5 x=-1
Tenglama yechildi.
x=5
x qiymati -1 teng bo‘lmaydi.
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
x qiymati -1,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x+1\right) ga, x-4,x+1,\left(x-4\right)\left(x+1\right) ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
x+1 ga 2x-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
x-4 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-x^{2}+2x+8=x+6
x^{2}-2x-8 teskarisini topish uchun har birining teskarisini toping.
x^{2}-5x-7+2x+8=x+6
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-3x-7+8=x+6
-3x ni olish uchun -5x va 2x ni birlashtirish.
x^{2}-3x+1=x+6
1 olish uchun -7 va 8'ni qo'shing.
x^{2}-3x+1-x=6
Ikkala tarafdan x ni ayirish.
x^{2}-4x+1=6
-4x ni olish uchun -3x va -x ni birlashtirish.
x^{2}-4x=6-1
Ikkala tarafdan 1 ni ayirish.
x^{2}-4x=5
5 olish uchun 6 dan 1 ni ayirish.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=5+4
-2 kvadratini chiqarish.
x^{2}-4x+4=9
5 ni 4 ga qo'shish.
\left(x-2\right)^{2}=9
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=3 x-2=-3
Qisqartirish.
x=5 x=-1
2 ni tenglamaning ikkala tarafiga qo'shish.
x=5
x qiymati -1 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}