Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
x qiymati -1,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x+1\right) ga, x-4,x+1,\left(x-4\right)\left(x+1\right) ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
x+1 ga 2x-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
x-4 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-x^{2}+2x+8=x+6
x^{2}-2x-8 teskarisini topish uchun har birining teskarisini toping.
x^{2}-5x-7+2x+8=x+6
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-3x-7+8=x+6
-3x ni olish uchun -5x va 2x ni birlashtirish.
x^{2}-3x+1=x+6
1 olish uchun -7 va 8'ni qo'shing.
x^{2}-3x+1-x=6
Ikkala tarafdan x ni ayirish.
x^{2}-4x+1=6
-4x ni olish uchun -3x va -x ni birlashtirish.
x^{2}-4x+1-6=0
Ikkala tarafdan 6 ni ayirish.
x^{2}-4x-5=0
-5 olish uchun 1 dan 6 ni ayirish.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -5 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
-4 ni -5 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
16 ni 20 ga qo'shish.
x=\frac{-\left(-4\right)±6}{2}
36 ning kvadrat ildizini chiqarish.
x=\frac{4±6}{2}
-4 ning teskarisi 4 ga teng.
x=\frac{10}{2}
x=\frac{4±6}{2} tenglamasini yeching, bunda ± musbat. 4 ni 6 ga qo'shish.
x=5
10 ni 2 ga bo'lish.
x=-\frac{2}{2}
x=\frac{4±6}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 6 ni ayirish.
x=-1
-2 ni 2 ga bo'lish.
x=5 x=-1
Tenglama yechildi.
x=5
x qiymati -1 teng bo‘lmaydi.
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
x qiymati -1,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x+1\right) ga, x-4,x+1,\left(x-4\right)\left(x+1\right) ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
x+1 ga 2x-7 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
x-4 ga x+2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x-7-x^{2}+2x+8=x+6
x^{2}-2x-8 teskarisini topish uchun har birining teskarisini toping.
x^{2}-5x-7+2x+8=x+6
x^{2} ni olish uchun 2x^{2} va -x^{2} ni birlashtirish.
x^{2}-3x-7+8=x+6
-3x ni olish uchun -5x va 2x ni birlashtirish.
x^{2}-3x+1=x+6
1 olish uchun -7 va 8'ni qo'shing.
x^{2}-3x+1-x=6
Ikkala tarafdan x ni ayirish.
x^{2}-4x+1=6
-4x ni olish uchun -3x va -x ni birlashtirish.
x^{2}-4x=6-1
Ikkala tarafdan 1 ni ayirish.
x^{2}-4x=5
5 olish uchun 6 dan 1 ni ayirish.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-4x+4=5+4
-2 kvadratini chiqarish.
x^{2}-4x+4=9
5 ni 4 ga qo'shish.
\left(x-2\right)^{2}=9
x^{2}-4x+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-2=3 x-2=-3
Qisqartirish.
x=5 x=-1
2 ni tenglamaning ikkala tarafiga qo'shish.
x=5
x qiymati -1 teng bo‘lmaydi.