x uchun yechish
x = \frac{\sqrt{41} + 7}{2} \approx 6,701562119
x=\frac{7-\sqrt{41}}{2}\approx 0,298437881
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { 2 x - 3 } { x + 1 } + \frac { x - 3 } { x - 1 } = 2
Baham ko'rish
Klipbordga nusxa olish
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x+3+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x-1 ga 2x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x+3+x^{2}-2x-3=2\left(x-1\right)\left(x+1\right)
x+1 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-5x+3-2x-3=2\left(x-1\right)\left(x+1\right)
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-7x+3-3=2\left(x-1\right)\left(x+1\right)
-7x ni olish uchun -5x va -2x ni birlashtirish.
3x^{2}-7x=2\left(x-1\right)\left(x+1\right)
0 olish uchun 3 dan 3 ni ayirish.
3x^{2}-7x=\left(2x-2\right)\left(x+1\right)
2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-7x=2x^{2}-2
2x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-7x-2x^{2}=-2
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-7x=-2
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-7x+2=0
2 ni ikki tarafga qo’shing.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2}}{2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{41}}{2}
49 ni -8 ga qo'shish.
x=\frac{7±\sqrt{41}}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{\sqrt{41}+7}{2}
x=\frac{7±\sqrt{41}}{2} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{41} ga qo'shish.
x=\frac{7-\sqrt{41}}{2}
x=\frac{7±\sqrt{41}}{2} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}+7}{2} x=\frac{7-\sqrt{41}}{2}
Tenglama yechildi.
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x+3+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x-1 ga 2x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x+3+x^{2}-2x-3=2\left(x-1\right)\left(x+1\right)
x+1 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-5x+3-2x-3=2\left(x-1\right)\left(x+1\right)
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-7x+3-3=2\left(x-1\right)\left(x+1\right)
-7x ni olish uchun -5x va -2x ni birlashtirish.
3x^{2}-7x=2\left(x-1\right)\left(x+1\right)
0 olish uchun 3 dan 3 ni ayirish.
3x^{2}-7x=\left(2x-2\right)\left(x+1\right)
2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-7x=2x^{2}-2
2x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-7x-2x^{2}=-2
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-7x=-2
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-2+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=-2+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=\frac{41}{4}
-2 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=\frac{41}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{\sqrt{41}}{2} x-\frac{7}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}+7}{2} x=\frac{7-\sqrt{41}}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}