Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x+3+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x-1 ga 2x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x+3+x^{2}-2x-3=2\left(x-1\right)\left(x+1\right)
x+1 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-5x+3-2x-3=2\left(x-1\right)\left(x+1\right)
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-7x+3-3=2\left(x-1\right)\left(x+1\right)
-7x ni olish uchun -5x va -2x ni birlashtirish.
3x^{2}-7x=2\left(x-1\right)\left(x+1\right)
0 olish uchun 3 dan 3 ni ayirish.
3x^{2}-7x=\left(2x-2\right)\left(x+1\right)
2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-7x=2x^{2}-2
2x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-7x-2x^{2}=-2
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-7x=-2
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-7x+2=0
2 ni ikki tarafga qo’shing.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 2}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -7 ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 2}}{2}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-8}}{2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{41}}{2}
49 ni -8 ga qo'shish.
x=\frac{7±\sqrt{41}}{2}
-7 ning teskarisi 7 ga teng.
x=\frac{\sqrt{41}+7}{2}
x=\frac{7±\sqrt{41}}{2} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{41} ga qo'shish.
x=\frac{7-\sqrt{41}}{2}
x=\frac{7±\sqrt{41}}{2} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}+7}{2} x=\frac{7-\sqrt{41}}{2}
Tenglama yechildi.
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
2x^{2}-5x+3+\left(x+1\right)\left(x-3\right)=2\left(x-1\right)\left(x+1\right)
x-1 ga 2x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-5x+3+x^{2}-2x-3=2\left(x-1\right)\left(x+1\right)
x+1 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-5x+3-2x-3=2\left(x-1\right)\left(x+1\right)
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}-7x+3-3=2\left(x-1\right)\left(x+1\right)
-7x ni olish uchun -5x va -2x ni birlashtirish.
3x^{2}-7x=2\left(x-1\right)\left(x+1\right)
0 olish uchun 3 dan 3 ni ayirish.
3x^{2}-7x=\left(2x-2\right)\left(x+1\right)
2 ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}-7x=2x^{2}-2
2x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}-7x-2x^{2}=-2
Ikkala tarafdan 2x^{2} ni ayirish.
x^{2}-7x=-2
x^{2} ni olish uchun 3x^{2} va -2x^{2} ni birlashtirish.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-2+\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-7x+\frac{49}{4}=-2+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
x^{2}-7x+\frac{49}{4}=\frac{41}{4}
-2 ni \frac{49}{4} ga qo'shish.
\left(x-\frac{7}{2}\right)^{2}=\frac{41}{4}
x^{2}-7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{2}=\frac{\sqrt{41}}{2} x-\frac{7}{2}=-\frac{\sqrt{41}}{2}
Qisqartirish.
x=\frac{\sqrt{41}+7}{2} x=\frac{7-\sqrt{41}}{2}
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.