Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x-2x^{2}=12\left(x-2\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
2x-2x^{2}=12x-24
12 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x-2x^{2}-12x=-24
Ikkala tarafdan 12x ni ayirish.
-10x-2x^{2}=-24
-10x ni olish uchun 2x va -12x ni birlashtirish.
-10x-2x^{2}+24=0
24 ni ikki tarafga qo’shing.
-2x^{2}-10x+24=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-2\right)\times 24}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, -10 ni b va 24 ni c bilan almashtiring.
x=\frac{-\left(-10\right)±\sqrt{100-4\left(-2\right)\times 24}}{2\left(-2\right)}
-10 kvadratini chiqarish.
x=\frac{-\left(-10\right)±\sqrt{100+8\times 24}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{100+192}}{2\left(-2\right)}
8 ni 24 marotabaga ko'paytirish.
x=\frac{-\left(-10\right)±\sqrt{292}}{2\left(-2\right)}
100 ni 192 ga qo'shish.
x=\frac{-\left(-10\right)±2\sqrt{73}}{2\left(-2\right)}
292 ning kvadrat ildizini chiqarish.
x=\frac{10±2\sqrt{73}}{2\left(-2\right)}
-10 ning teskarisi 10 ga teng.
x=\frac{10±2\sqrt{73}}{-4}
2 ni -2 marotabaga ko'paytirish.
x=\frac{2\sqrt{73}+10}{-4}
x=\frac{10±2\sqrt{73}}{-4} tenglamasini yeching, bunda ± musbat. 10 ni 2\sqrt{73} ga qo'shish.
x=\frac{-\sqrt{73}-5}{2}
10+2\sqrt{73} ni -4 ga bo'lish.
x=\frac{10-2\sqrt{73}}{-4}
x=\frac{10±2\sqrt{73}}{-4} tenglamasini yeching, bunda ± manfiy. 10 dan 2\sqrt{73} ni ayirish.
x=\frac{\sqrt{73}-5}{2}
10-2\sqrt{73} ni -4 ga bo'lish.
x=\frac{-\sqrt{73}-5}{2} x=\frac{\sqrt{73}-5}{2}
Tenglama yechildi.
2x-2x^{2}=12\left(x-2\right)
x qiymati 2 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x-2 ga ko'paytirish.
2x-2x^{2}=12x-24
12 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x-2x^{2}-12x=-24
Ikkala tarafdan 12x ni ayirish.
-10x-2x^{2}=-24
-10x ni olish uchun 2x va -12x ni birlashtirish.
-2x^{2}-10x=-24
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-2x^{2}-10x}{-2}=-\frac{24}{-2}
Ikki tarafini -2 ga bo‘ling.
x^{2}+\left(-\frac{10}{-2}\right)x=-\frac{24}{-2}
-2 ga bo'lish -2 ga ko'paytirishni bekor qiladi.
x^{2}+5x=-\frac{24}{-2}
-10 ni -2 ga bo'lish.
x^{2}+5x=12
-24 ni -2 ga bo'lish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=12+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=12+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{73}{4}
12 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{73}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{73}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{\sqrt{73}}{2} x+\frac{5}{2}=-\frac{\sqrt{73}}{2}
Qisqartirish.
x=\frac{\sqrt{73}-5}{2} x=\frac{-\sqrt{73}-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.