Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x qiymati 3,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x-3\right) ga, x-4,x-3,x^{2}-7x+12 ning eng kichik karralisiga ko‘paytiring.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x ni olish uchun -6x va 3x ni birlashtirish.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} ni olish uchun 2x^{2} va 4x^{2} ni birlashtirish.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x ni olish uchun -3x va -28x ni birlashtirish.
6x^{2}-31x+36=30+5x^{2}-36x
36 olish uchun -12 va 48'ni qo'shing.
6x^{2}-31x+36-30=5x^{2}-36x
Ikkala tarafdan 30 ni ayirish.
6x^{2}-31x+6=5x^{2}-36x
6 olish uchun 36 dan 30 ni ayirish.
6x^{2}-31x+6-5x^{2}=-36x
Ikkala tarafdan 5x^{2} ni ayirish.
x^{2}-31x+6=-36x
x^{2} ni olish uchun 6x^{2} va -5x^{2} ni birlashtirish.
x^{2}-31x+6+36x=0
36x ni ikki tarafga qo’shing.
x^{2}+5x+6=0
5x ni olish uchun -31x va 36x ni birlashtirish.
a+b=5 ab=6
Bu tenglamani yechish uchun x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) formulasi yordamida x^{2}+5x+6 ni faktorlang. a va b ni topish uchun yechiladigan tizimni sozlang.
1,6 2,3
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 6-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+6=7 2+3=5
Har bir juftlik yigʻindisini hisoblang.
a=2 b=3
Yechim – 5 yigʻindisini beruvchi juftlik.
\left(x+2\right)\left(x+3\right)
Faktorlangan \left(x+a\right)\left(x+b\right) ifodani olingan qiymatlar bilan qaytadan yozing.
x=-2 x=-3
Tenglamani yechish uchun x+2=0 va x+3=0 ni yeching.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x qiymati 3,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x-3\right) ga, x-4,x-3,x^{2}-7x+12 ning eng kichik karralisiga ko‘paytiring.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x ni olish uchun -6x va 3x ni birlashtirish.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} ni olish uchun 2x^{2} va 4x^{2} ni birlashtirish.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x ni olish uchun -3x va -28x ni birlashtirish.
6x^{2}-31x+36=30+5x^{2}-36x
36 olish uchun -12 va 48'ni qo'shing.
6x^{2}-31x+36-30=5x^{2}-36x
Ikkala tarafdan 30 ni ayirish.
6x^{2}-31x+6=5x^{2}-36x
6 olish uchun 36 dan 30 ni ayirish.
6x^{2}-31x+6-5x^{2}=-36x
Ikkala tarafdan 5x^{2} ni ayirish.
x^{2}-31x+6=-36x
x^{2} ni olish uchun 6x^{2} va -5x^{2} ni birlashtirish.
x^{2}-31x+6+36x=0
36x ni ikki tarafga qo’shing.
x^{2}+5x+6=0
5x ni olish uchun -31x va 36x ni birlashtirish.
a+b=5 ab=1\times 6=6
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon x^{2}+ax+bx+6 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,6 2,3
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b musbat boʻlganda, a va b ikkisi ham musbat. 6-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1+6=7 2+3=5
Har bir juftlik yigʻindisini hisoblang.
a=2 b=3
Yechim – 5 yigʻindisini beruvchi juftlik.
\left(x^{2}+2x\right)+\left(3x+6\right)
x^{2}+5x+6 ni \left(x^{2}+2x\right)+\left(3x+6\right) sifatida qaytadan yozish.
x\left(x+2\right)+3\left(x+2\right)
Birinchi guruhda x ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(x+2\right)\left(x+3\right)
Distributiv funktsiyasidan foydalangan holda x+2 umumiy terminini chiqaring.
x=-2 x=-3
Tenglamani yechish uchun x+2=0 va x+3=0 ni yeching.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x qiymati 3,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x-3\right) ga, x-4,x-3,x^{2}-7x+12 ning eng kichik karralisiga ko‘paytiring.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x ni olish uchun -6x va 3x ni birlashtirish.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} ni olish uchun 2x^{2} va 4x^{2} ni birlashtirish.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x ni olish uchun -3x va -28x ni birlashtirish.
6x^{2}-31x+36=30+5x^{2}-36x
36 olish uchun -12 va 48'ni qo'shing.
6x^{2}-31x+36-30=5x^{2}-36x
Ikkala tarafdan 30 ni ayirish.
6x^{2}-31x+6=5x^{2}-36x
6 olish uchun 36 dan 30 ni ayirish.
6x^{2}-31x+6-5x^{2}=-36x
Ikkala tarafdan 5x^{2} ni ayirish.
x^{2}-31x+6=-36x
x^{2} ni olish uchun 6x^{2} va -5x^{2} ni birlashtirish.
x^{2}-31x+6+36x=0
36x ni ikki tarafga qo’shing.
x^{2}+5x+6=0
5x ni olish uchun -31x va 36x ni birlashtirish.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va 6 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-24}}{2}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{1}}{2}
25 ni -24 ga qo'shish.
x=\frac{-5±1}{2}
1 ning kvadrat ildizini chiqarish.
x=-\frac{4}{2}
x=\frac{-5±1}{2} tenglamasini yeching, bunda ± musbat. -5 ni 1 ga qo'shish.
x=-2
-4 ni 2 ga bo'lish.
x=-\frac{6}{2}
x=\frac{-5±1}{2} tenglamasini yeching, bunda ± manfiy. -5 dan 1 ni ayirish.
x=-3
-6 ni 2 ga bo'lish.
x=-2 x=-3
Tenglama yechildi.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x qiymati 3,4 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-4\right)\left(x-3\right) ga, x-4,x-3,x^{2}-7x+12 ning eng kichik karralisiga ko‘paytiring.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-3 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
2x-6 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
x-4 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
-3x ni olish uchun -6x va 3x ni birlashtirish.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
x-4 ga x-3 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
x^{2}-7x+12 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
6x^{2} ni olish uchun 2x^{2} va 4x^{2} ni birlashtirish.
6x^{2}-31x-12+48=30+5x^{2}-36x
-31x ni olish uchun -3x va -28x ni birlashtirish.
6x^{2}-31x+36=30+5x^{2}-36x
36 olish uchun -12 va 48'ni qo'shing.
6x^{2}-31x+36-5x^{2}=30-36x
Ikkala tarafdan 5x^{2} ni ayirish.
x^{2}-31x+36=30-36x
x^{2} ni olish uchun 6x^{2} va -5x^{2} ni birlashtirish.
x^{2}-31x+36+36x=30
36x ni ikki tarafga qo’shing.
x^{2}+5x+36=30
5x ni olish uchun -31x va 36x ni birlashtirish.
x^{2}+5x=30-36
Ikkala tarafdan 36 ni ayirish.
x^{2}+5x=-6
-6 olish uchun 30 dan 36 ni ayirish.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
-6 ni \frac{25}{4} ga qo'shish.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
x^{2}+5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Qisqartirish.
x=-2 x=-3
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.