x uchun yechish
x = \frac{\sqrt{593} + 25}{16} \approx 3,084474458
x=\frac{25-\sqrt{593}}{16}\approx 0,040525542
Grafik
Baham ko'rish
Klipbordga nusxa olish
4\times 2xx-2x+x+1=24x
Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
8xx-2x+x+1=24x
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
8x^{2}-2x+x+1=24x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
8x^{2}-x+1=24x
-x ni olish uchun -2x va x ni birlashtirish.
8x^{2}-x+1-24x=0
Ikkala tarafdan 24x ni ayirish.
8x^{2}-25x+1=0
-25x ni olish uchun -x va -24x ni birlashtirish.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 8}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -25 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 8}}{2\times 8}
-25 kvadratini chiqarish.
x=\frac{-\left(-25\right)±\sqrt{625-32}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-25\right)±\sqrt{593}}{2\times 8}
625 ni -32 ga qo'shish.
x=\frac{25±\sqrt{593}}{2\times 8}
-25 ning teskarisi 25 ga teng.
x=\frac{25±\sqrt{593}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{\sqrt{593}+25}{16}
x=\frac{25±\sqrt{593}}{16} tenglamasini yeching, bunda ± musbat. 25 ni \sqrt{593} ga qo'shish.
x=\frac{25-\sqrt{593}}{16}
x=\frac{25±\sqrt{593}}{16} tenglamasini yeching, bunda ± manfiy. 25 dan \sqrt{593} ni ayirish.
x=\frac{\sqrt{593}+25}{16} x=\frac{25-\sqrt{593}}{16}
Tenglama yechildi.
4\times 2xx-2x+x+1=24x
Tenglamaning ikkala tarafini 4 ga, 2,4 ning eng kichik karralisiga ko‘paytiring.
8xx-2x+x+1=24x
8 hosil qilish uchun 4 va 2 ni ko'paytirish.
8x^{2}-2x+x+1=24x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
8x^{2}-x+1=24x
-x ni olish uchun -2x va x ni birlashtirish.
8x^{2}-x+1-24x=0
Ikkala tarafdan 24x ni ayirish.
8x^{2}-25x+1=0
-25x ni olish uchun -x va -24x ni birlashtirish.
8x^{2}-25x=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{8x^{2}-25x}{8}=-\frac{1}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}-\frac{25}{8}x=-\frac{1}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{25}{8}x+\left(-\frac{25}{16}\right)^{2}=-\frac{1}{8}+\left(-\frac{25}{16}\right)^{2}
-\frac{25}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{25}{16} olish uchun. Keyin, -\frac{25}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{25}{8}x+\frac{625}{256}=-\frac{1}{8}+\frac{625}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{25}{16} kvadratini chiqarish.
x^{2}-\frac{25}{8}x+\frac{625}{256}=\frac{593}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{8} ni \frac{625}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{25}{16}\right)^{2}=\frac{593}{256}
x^{2}-\frac{25}{8}x+\frac{625}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{25}{16}\right)^{2}}=\sqrt{\frac{593}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{25}{16}=\frac{\sqrt{593}}{16} x-\frac{25}{16}=-\frac{\sqrt{593}}{16}
Qisqartirish.
x=\frac{\sqrt{593}+25}{16} x=\frac{25-\sqrt{593}}{16}
\frac{25}{16} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}