Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\left(2\times 2^{2}+1\right)
x qiymati -4,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+4\right) ga ko'paytirish.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\left(2^{3}+1\right)
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\left(8+1\right)
3 daraja ko‘rsatkichini 2 ga hisoblang va 8 ni qiymatni oling.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\times 9
9 olish uchun 8 va 1'ni qo'shing.
2x^{2}+1=\frac{3}{2}\left(x-1\right)\left(x+4\right)
\frac{3}{2} hosil qilish uchun \frac{1}{6} va 9 ni ko'paytirish.
2x^{2}+1=\left(\frac{3}{2}x-\frac{3}{2}\right)\left(x+4\right)
\frac{3}{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+1=\frac{3}{2}x^{2}+\frac{9}{2}x-6
\frac{3}{2}x-\frac{3}{2} ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+1-\frac{3}{2}x^{2}=\frac{9}{2}x-6
Ikkala tarafdan \frac{3}{2}x^{2} ni ayirish.
\frac{1}{2}x^{2}+1=\frac{9}{2}x-6
\frac{1}{2}x^{2} ni olish uchun 2x^{2} va -\frac{3}{2}x^{2} ni birlashtirish.
\frac{1}{2}x^{2}+1-\frac{9}{2}x=-6
Ikkala tarafdan \frac{9}{2}x ni ayirish.
\frac{1}{2}x^{2}+1-\frac{9}{2}x+6=0
6 ni ikki tarafga qo’shing.
\frac{1}{2}x^{2}+7-\frac{9}{2}x=0
7 olish uchun 1 va 6'ni qo'shing.
\frac{1}{2}x^{2}-\frac{9}{2}x+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\left(-\frac{9}{2}\right)^{2}-4\times \frac{1}{2}\times 7}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -\frac{9}{2} ni b va 7 ni c bilan almashtiring.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-4\times \frac{1}{2}\times 7}}{2\times \frac{1}{2}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-2\times 7}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{81}{4}-14}}{2\times \frac{1}{2}}
-2 ni 7 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{9}{2}\right)±\sqrt{\frac{25}{4}}}{2\times \frac{1}{2}}
\frac{81}{4} ni -14 ga qo'shish.
x=\frac{-\left(-\frac{9}{2}\right)±\frac{5}{2}}{2\times \frac{1}{2}}
\frac{25}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{9}{2}±\frac{5}{2}}{2\times \frac{1}{2}}
-\frac{9}{2} ning teskarisi \frac{9}{2} ga teng.
x=\frac{\frac{9}{2}±\frac{5}{2}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{7}{1}
x=\frac{\frac{9}{2}±\frac{5}{2}}{1} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{2} ni \frac{5}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=7
7 ni 1 ga bo'lish.
x=\frac{2}{1}
x=\frac{\frac{9}{2}±\frac{5}{2}}{1} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{5}{2} ni \frac{9}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=2
2 ni 1 ga bo'lish.
x=7 x=2
Tenglama yechildi.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\left(2\times 2^{2}+1\right)
x qiymati -4,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+4\right) ga ko'paytirish.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\left(2^{3}+1\right)
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 2 ni qo‘shib, 3 ni oling.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\left(8+1\right)
3 daraja ko‘rsatkichini 2 ga hisoblang va 8 ni qiymatni oling.
2x^{2}+1=\frac{1}{6}\left(x-1\right)\left(x+4\right)\times 9
9 olish uchun 8 va 1'ni qo'shing.
2x^{2}+1=\frac{3}{2}\left(x-1\right)\left(x+4\right)
\frac{3}{2} hosil qilish uchun \frac{1}{6} va 9 ni ko'paytirish.
2x^{2}+1=\left(\frac{3}{2}x-\frac{3}{2}\right)\left(x+4\right)
\frac{3}{2} ga x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+1=\frac{3}{2}x^{2}+\frac{9}{2}x-6
\frac{3}{2}x-\frac{3}{2} ga x+4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+1-\frac{3}{2}x^{2}=\frac{9}{2}x-6
Ikkala tarafdan \frac{3}{2}x^{2} ni ayirish.
\frac{1}{2}x^{2}+1=\frac{9}{2}x-6
\frac{1}{2}x^{2} ni olish uchun 2x^{2} va -\frac{3}{2}x^{2} ni birlashtirish.
\frac{1}{2}x^{2}+1-\frac{9}{2}x=-6
Ikkala tarafdan \frac{9}{2}x ni ayirish.
\frac{1}{2}x^{2}-\frac{9}{2}x=-6-1
Ikkala tarafdan 1 ni ayirish.
\frac{1}{2}x^{2}-\frac{9}{2}x=-7
-7 olish uchun -6 dan 1 ni ayirish.
\frac{\frac{1}{2}x^{2}-\frac{9}{2}x}{\frac{1}{2}}=-\frac{7}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{9}{2}}{\frac{1}{2}}\right)x=-\frac{7}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-9x=-\frac{7}{\frac{1}{2}}
-\frac{9}{2} ni \frac{1}{2} ga bo'lish -\frac{9}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-9x=-14
-7 ni \frac{1}{2} ga bo'lish -7 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=-14+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-9x+\frac{81}{4}=-14+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
x^{2}-9x+\frac{81}{4}=\frac{25}{4}
-14 ni \frac{81}{4} ga qo'shish.
\left(x-\frac{9}{2}\right)^{2}=\frac{25}{4}
x^{2}-9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{2}=\frac{5}{2} x-\frac{9}{2}=-\frac{5}{2}
Qisqartirish.
x=7 x=2
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.