Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x+1=4xx
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
2x+1=4x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x+1-4x^{2}=0
Ikkala tarafdan 4x^{2} ni ayirish.
-4x^{2}+2x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)}}{2\left(-4\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -4 ni a, 2 ni b va 1 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-4\right)}}{2\left(-4\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+16}}{2\left(-4\right)}
-4 ni -4 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{20}}{2\left(-4\right)}
4 ni 16 ga qo'shish.
x=\frac{-2±2\sqrt{5}}{2\left(-4\right)}
20 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{5}}{-8}
2 ni -4 marotabaga ko'paytirish.
x=\frac{2\sqrt{5}-2}{-8}
x=\frac{-2±2\sqrt{5}}{-8} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{5} ga qo'shish.
x=\frac{1-\sqrt{5}}{4}
-2+2\sqrt{5} ni -8 ga bo'lish.
x=\frac{-2\sqrt{5}-2}{-8}
x=\frac{-2±2\sqrt{5}}{-8} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{5} ni ayirish.
x=\frac{\sqrt{5}+1}{4}
-2-2\sqrt{5} ni -8 ga bo'lish.
x=\frac{1-\sqrt{5}}{4} x=\frac{\sqrt{5}+1}{4}
Tenglama yechildi.
2x+1=4xx
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
2x+1=4x^{2}
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x+1-4x^{2}=0
Ikkala tarafdan 4x^{2} ni ayirish.
2x-4x^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-4x^{2}+2x=-1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-4x^{2}+2x}{-4}=-\frac{1}{-4}
Ikki tarafini -4 ga bo‘ling.
x^{2}+\frac{2}{-4}x=-\frac{1}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-\frac{1}{-4}
\frac{2}{-4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=\frac{1}{4}
-1 ni -4 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{1}{4}+\frac{1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{5}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=\frac{5}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=\frac{\sqrt{5}}{4} x-\frac{1}{4}=-\frac{\sqrt{5}}{4}
Qisqartirish.
x=\frac{\sqrt{5}+1}{4} x=\frac{1-\sqrt{5}}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.