t uchun yechish
t=1
t=3
Baham ko'rish
Klipbordga nusxa olish
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
t qiymati 7 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(t-7\right) ga, t+3-t,10-\left(t+3\right) ning eng kichik karralisiga ko‘paytiring.
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
-t ni olish uchun 2t va -3t ni birlashtirish.
\left(-t+7\right)t=-3\left(t-1-2t\right)
t-7 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-t^{2}+7t=-3\left(t-1-2t\right)
-t+7 ga t ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-t^{2}+7t=-3\left(-t-1\right)
-t ni olish uchun t va -2t ni birlashtirish.
-t^{2}+7t=3t+3
-3 ga -t-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-t^{2}+7t-3t=3
Ikkala tarafdan 3t ni ayirish.
-t^{2}+4t=3
4t ni olish uchun 7t va -3t ni birlashtirish.
-t^{2}+4t-3=0
Ikkala tarafdan 3 ni ayirish.
t=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 4 ni b va -3 ni c bilan almashtiring.
t=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
4 kvadratini chiqarish.
t=\frac{-4±\sqrt{16+4\left(-3\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
t=\frac{-4±\sqrt{16-12}}{2\left(-1\right)}
4 ni -3 marotabaga ko'paytirish.
t=\frac{-4±\sqrt{4}}{2\left(-1\right)}
16 ni -12 ga qo'shish.
t=\frac{-4±2}{2\left(-1\right)}
4 ning kvadrat ildizini chiqarish.
t=\frac{-4±2}{-2}
2 ni -1 marotabaga ko'paytirish.
t=-\frac{2}{-2}
t=\frac{-4±2}{-2} tenglamasini yeching, bunda ± musbat. -4 ni 2 ga qo'shish.
t=1
-2 ni -2 ga bo'lish.
t=-\frac{6}{-2}
t=\frac{-4±2}{-2} tenglamasini yeching, bunda ± manfiy. -4 dan 2 ni ayirish.
t=3
-6 ni -2 ga bo'lish.
t=1 t=3
Tenglama yechildi.
\left(t-7\right)\left(2t-3t\right)=-3\left(t-1-2t\right)
t qiymati 7 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3\left(t-7\right) ga, t+3-t,10-\left(t+3\right) ning eng kichik karralisiga ko‘paytiring.
\left(t-7\right)\left(-1\right)t=-3\left(t-1-2t\right)
-t ni olish uchun 2t va -3t ni birlashtirish.
\left(-t+7\right)t=-3\left(t-1-2t\right)
t-7 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-t^{2}+7t=-3\left(t-1-2t\right)
-t+7 ga t ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-t^{2}+7t=-3\left(-t-1\right)
-t ni olish uchun t va -2t ni birlashtirish.
-t^{2}+7t=3t+3
-3 ga -t-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-t^{2}+7t-3t=3
Ikkala tarafdan 3t ni ayirish.
-t^{2}+4t=3
4t ni olish uchun 7t va -3t ni birlashtirish.
\frac{-t^{2}+4t}{-1}=\frac{3}{-1}
Ikki tarafini -1 ga bo‘ling.
t^{2}+\frac{4}{-1}t=\frac{3}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
t^{2}-4t=\frac{3}{-1}
4 ni -1 ga bo'lish.
t^{2}-4t=-3
3 ni -1 ga bo'lish.
t^{2}-4t+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-4t+4=-3+4
-2 kvadratini chiqarish.
t^{2}-4t+4=1
-3 ni 4 ga qo'shish.
\left(t-2\right)^{2}=1
t^{2}-4t+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-2\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-2=1 t-2=-1
Qisqartirish.
t=3 t=1
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}