Baholash
\frac{1}{r-1}
r ga nisbatan hosilani topish
-\frac{1}{\left(r-1\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{1}{r+1}
Faktor: r^{2}-1.
\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{r-1}{\left(r-1\right)\left(r+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(r-1\right)\left(r+1\right) va r+1 ning eng kichik umumiy karralisi \left(r-1\right)\left(r+1\right). \frac{1}{r+1} ni \frac{r-1}{r-1} marotabaga ko'paytirish.
\frac{2r-\left(r-1\right)}{\left(r-1\right)\left(r+1\right)}
\frac{2r}{\left(r-1\right)\left(r+1\right)} va \frac{r-1}{\left(r-1\right)\left(r+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2r-r+1}{\left(r-1\right)\left(r+1\right)}
2r-\left(r-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{r+1}{\left(r-1\right)\left(r+1\right)}
2r-r+1 kabi iboralarga o‘xshab birlashtiring.
\frac{1}{r-1}
Surat va maxrajdagi ikkala r+1 ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{1}{r+1})
Faktor: r^{2}-1.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r}{\left(r-1\right)\left(r+1\right)}-\frac{r-1}{\left(r-1\right)\left(r+1\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(r-1\right)\left(r+1\right) va r+1 ning eng kichik umumiy karralisi \left(r-1\right)\left(r+1\right). \frac{1}{r+1} ni \frac{r-1}{r-1} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r-\left(r-1\right)}{\left(r-1\right)\left(r+1\right)})
\frac{2r}{\left(r-1\right)\left(r+1\right)} va \frac{r-1}{\left(r-1\right)\left(r+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{2r-r+1}{\left(r-1\right)\left(r+1\right)})
2r-\left(r-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{r+1}{\left(r-1\right)\left(r+1\right)})
2r-r+1 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}r}(\frac{1}{r-1})
Surat va maxrajdagi ikkala r+1 ni qisqartiring.
-\left(r^{1}-1\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}r}(r^{1}-1)
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(r^{1}-1\right)^{-2}r^{1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-r^{0}\left(r^{1}-1\right)^{-2}
Qisqartirish.
-r^{0}\left(r-1\right)^{-2}
Har qanday t sharti uchun t^{1}=t.
-\left(r-1\right)^{-2}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}