Baholash
\frac{2}{q}
q ga nisbatan hosilani topish
-\frac{2}{q^{2}}
Baham ko'rish
Klipbordga nusxa olish
\left(2q^{8}\right)^{1}\times \frac{1}{q^{9}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
2^{1}\left(q^{8}\right)^{1}\times \frac{1}{1}\times \frac{1}{q^{9}}
Ikki yoki undan ko'p raqam koʻpaytmasini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring va ularning koʻpaytmasini chiqaring.
2^{1}\times \frac{1}{1}\left(q^{8}\right)^{1}\times \frac{1}{q^{9}}
Ko'paytirishning kommutativ xususiyatidan foydalanish.
2^{1}\times \frac{1}{1}q^{8}q^{9\left(-1\right)}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
2^{1}\times \frac{1}{1}q^{8}q^{-9}
9 ni -1 marotabaga ko'paytirish.
2^{1}\times \frac{1}{1}q^{8-9}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
2^{1}\times \frac{1}{1}\times \frac{1}{q}
8 va -9 belgilarini qo'shish.
2\times \frac{1}{1}\times \frac{1}{q}
2 ni 1 daraja ko'rsatgichiga oshirish.
\frac{\mathrm{d}}{\mathrm{d}q}(\frac{2}{1}q^{8-9})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}q}(2\times \frac{1}{q})
Arifmetik hisobni amalga oshirish.
-2q^{-1-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-2q^{-2}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}