Asosiy tarkibga oʻtish
Baholash
Tick mark Image
m ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
Faktor: m^{3}+n^{3}. Faktor: m^{2}-n^{2}.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(m+n\right)\left(m^{2}-mn+n^{2}\right) va \left(m+n\right)\left(m-n\right) ning eng kichik umumiy karralisi \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} ni \frac{m-n}{m-n} marotabaga ko'paytirish. \frac{2m}{\left(m+n\right)\left(m-n\right)} ni \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}} marotabaga ko'paytirish.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} va \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2} kabi iboralarga o‘xshab birlashtiring.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) va m-n ning eng kichik umumiy karralisi \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). \frac{1}{m-n} ni \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} marotabaga ko'paytirish.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} va \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right) ichidagi ko‘paytirishlarni bajaring.
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3} kabi iboralarga o‘xshab birlashtiring.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
Surat va maxrajdagi ikkala m-n ni qisqartiring.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
\left(m+n\right)\left(m^{2}-mn+n^{2}\right) ni kengaytirish.