Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1-i.
\frac{2i\left(1-i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2i\left(1-i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2i\times 1+2\left(-1\right)i^{2}}{2}
2i ni 1-i marotabaga ko'paytirish.
\frac{2i\times 1+2\left(-1\right)\left(-1\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{2+2i}{2}
2i\times 1+2\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
1+i
1+i ni olish uchun 2+2i ni 2 ga bo‘ling.
Re(\frac{2i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
\frac{2i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
Re(\frac{2i\left(1-i\right)}{1^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{2i\left(1-i\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2i\times 1+2\left(-1\right)i^{2}}{2})
2i ni 1-i marotabaga ko'paytirish.
Re(\frac{2i\times 1+2\left(-1\right)\left(-1\right)}{2})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{2+2i}{2})
2i\times 1+2\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
Re(1+i)
1+i ni olish uchun 2+2i ni 2 ga bo‘ling.
1
1+i ning real qismi – 1.