Baholash
\frac{4}{a-b}
Kengaytirish
\frac{4}{a-b}
Baham ko'rish
Klipbordga nusxa olish
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b va a+b ning eng kichik umumiy karralisi \left(a+b\right)\left(a-b\right). \frac{1}{a-b} ni \frac{a+b}{a+b} marotabaga ko'paytirish. \frac{1}{a+b} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
\frac{a+b}{\left(a+b\right)\left(a-b\right)} va \frac{a-b}{\left(a+b\right)\left(a-b\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
a+b-\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
a+b-a+b kabi iboralarga o‘xshab birlashtiring.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2a+2b}{b} ni \frac{2b}{\left(a+b\right)\left(a-b\right)} ga ko‘paytiring.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
Surat va maxrajdagi ikkala b ni qisqartiring.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{2^{2}}{a-b}
Surat va maxrajdagi ikkala a+b ni qisqartiring.
\frac{4}{a-b}
Ifodani kengaytiring.
\frac{2a+2b}{b}\left(\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{a-b}{\left(a+b\right)\left(a-b\right)}\right)
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. a-b va a+b ning eng kichik umumiy karralisi \left(a+b\right)\left(a-b\right). \frac{1}{a-b} ni \frac{a+b}{a+b} marotabaga ko'paytirish. \frac{1}{a+b} ni \frac{a-b}{a-b} marotabaga ko'paytirish.
\frac{2a+2b}{b}\times \frac{a+b-\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}
\frac{a+b}{\left(a+b\right)\left(a-b\right)} va \frac{a-b}{\left(a+b\right)\left(a-b\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2a+2b}{b}\times \frac{a+b-a+b}{\left(a+b\right)\left(a-b\right)}
a+b-\left(a-b\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2a+2b}{b}\times \frac{2b}{\left(a+b\right)\left(a-b\right)}
a+b-a+b kabi iboralarga o‘xshab birlashtiring.
\frac{\left(2a+2b\right)\times 2b}{b\left(a+b\right)\left(a-b\right)}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{2a+2b}{b} ni \frac{2b}{\left(a+b\right)\left(a-b\right)} ga ko‘paytiring.
\frac{2\left(2a+2b\right)}{\left(a+b\right)\left(a-b\right)}
Surat va maxrajdagi ikkala b ni qisqartiring.
\frac{2^{2}\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Hali faktorlanmagan ifodalarni faktorlang.
\frac{2^{2}}{a-b}
Surat va maxrajdagi ikkala a+b ni qisqartiring.
\frac{4}{a-b}
Ifodani kengaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}