Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Kengaytirish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\frac{2\left(u+2\right)}{u+2}-\frac{2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{u+2}{u+2} marotabaga ko'paytirish.
\frac{\frac{2\left(u+2\right)-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
\frac{2\left(u+2\right)}{u+2} va \frac{2}{u+2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{2u+4-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
2\left(u+2\right)-2 ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{2u+2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
2u+4-2 kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{2u+2}{u+2}}{\frac{2}{2\left(u+2\right)}+\frac{u\left(u+2\right)}{2\left(u+2\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. u+2 va 2 ning eng kichik umumiy karralisi 2\left(u+2\right). \frac{1}{u+2} ni \frac{2}{2} marotabaga ko'paytirish. \frac{u}{2} ni \frac{u+2}{u+2} marotabaga ko'paytirish.
\frac{\frac{2u+2}{u+2}}{\frac{2+u\left(u+2\right)}{2\left(u+2\right)}}
\frac{2}{2\left(u+2\right)} va \frac{u\left(u+2\right)}{2\left(u+2\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{2u+2}{u+2}}{\frac{2+u^{2}+2u}{2\left(u+2\right)}}
2+u\left(u+2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\left(2u+2\right)\times 2\left(u+2\right)}{\left(u+2\right)\left(2+u^{2}+2u\right)}
\frac{2u+2}{u+2} ni \frac{2+u^{2}+2u}{2\left(u+2\right)} ga bo'lish \frac{2u+2}{u+2} ga k'paytirish \frac{2+u^{2}+2u}{2\left(u+2\right)} ga qaytarish.
\frac{2\left(2u+2\right)}{u^{2}+2u+2}
Surat va maxrajdagi ikkala u+2 ni qisqartiring.
\frac{4u+4}{u^{2}+2u+2}
2 ga 2u+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\frac{2\left(u+2\right)}{u+2}-\frac{2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2 ni \frac{u+2}{u+2} marotabaga ko'paytirish.
\frac{\frac{2\left(u+2\right)-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
\frac{2\left(u+2\right)}{u+2} va \frac{2}{u+2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\frac{2u+4-2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
2\left(u+2\right)-2 ichidagi ko‘paytirishlarni bajaring.
\frac{\frac{2u+2}{u+2}}{\frac{1}{u+2}+\frac{u}{2}}
2u+4-2 kabi iboralarga o‘xshab birlashtiring.
\frac{\frac{2u+2}{u+2}}{\frac{2}{2\left(u+2\right)}+\frac{u\left(u+2\right)}{2\left(u+2\right)}}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. u+2 va 2 ning eng kichik umumiy karralisi 2\left(u+2\right). \frac{1}{u+2} ni \frac{2}{2} marotabaga ko'paytirish. \frac{u}{2} ni \frac{u+2}{u+2} marotabaga ko'paytirish.
\frac{\frac{2u+2}{u+2}}{\frac{2+u\left(u+2\right)}{2\left(u+2\right)}}
\frac{2}{2\left(u+2\right)} va \frac{u\left(u+2\right)}{2\left(u+2\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\frac{2u+2}{u+2}}{\frac{2+u^{2}+2u}{2\left(u+2\right)}}
2+u\left(u+2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\left(2u+2\right)\times 2\left(u+2\right)}{\left(u+2\right)\left(2+u^{2}+2u\right)}
\frac{2u+2}{u+2} ni \frac{2+u^{2}+2u}{2\left(u+2\right)} ga bo'lish \frac{2u+2}{u+2} ga k'paytirish \frac{2+u^{2}+2u}{2\left(u+2\right)} ga qaytarish.
\frac{2\left(2u+2\right)}{u^{2}+2u+2}
Surat va maxrajdagi ikkala u+2 ni qisqartiring.
\frac{4u+4}{u^{2}+2u+2}
2 ga 2u+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.