Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-5 va x+3 ning eng kichik umumiy karralisi \left(x-5\right)\left(x+3\right). \frac{2}{x-5} ni \frac{x+3}{x+3} marotabaga ko'paytirish. \frac{5}{x+3} ni \frac{x-5}{x-5} marotabaga ko'paytirish.
\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)}
\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} va \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)}
2\left(x+3\right)-5\left(x-5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-3x+31}{\left(x-5\right)\left(x+3\right)}
2x+6-5x+25 kabi iboralarga o‘xshab birlashtiring.
\frac{-3x+31}{x^{2}-2x-15}
\left(x-5\right)\left(x+3\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)}-\frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-5 va x+3 ning eng kichik umumiy karralisi \left(x-5\right)\left(x+3\right). \frac{2}{x-5} ni \frac{x+3}{x+3} marotabaga ko'paytirish. \frac{5}{x+3} ni \frac{x-5}{x-5} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+3\right)-5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)})
\frac{2\left(x+3\right)}{\left(x-5\right)\left(x+3\right)} va \frac{5\left(x-5\right)}{\left(x-5\right)\left(x+3\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+6-5x+25}{\left(x-5\right)\left(x+3\right)})
2\left(x+3\right)-5\left(x-5\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{\left(x-5\right)\left(x+3\right)})
2x+6-5x+25 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}+3x-5x-15})
x-5 ifodaning har bir elementini x+3 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-3x+31}{x^{2}-2x-15})
-2x ni olish uchun 3x va -5x ni birlashtirish.
\frac{\left(x^{2}-2x^{1}-15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-3x^{1}+31)-\left(-3x^{1}+31\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-2x^{1}-15)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{1-1}-\left(-3x^{1}+31\right)\left(2x^{2-1}-2x^{1-1}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-2x^{1}-15\right)\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Qisqartirish.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}+31\right)\left(2x^{1}-2x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
x^{2}-2x^{1}-15 ni -3x^{0} marotabaga ko'paytirish.
\frac{x^{2}\left(-3\right)x^{0}-2x^{1}\left(-3\right)x^{0}-15\left(-3\right)x^{0}-\left(-3x^{1}\times 2x^{1}-3x^{1}\left(-2\right)x^{0}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
-3x^{1}+31 ni 2x^{1}-2x^{0} marotabaga ko'paytirish.
\frac{-3x^{2}-2\left(-3\right)x^{1}-15\left(-3\right)x^{0}-\left(-3\times 2x^{1+1}-3\left(-2\right)x^{1}+31\times 2x^{1}+31\left(-2\right)x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-3x^{2}+6x^{1}+45x^{0}-\left(-6x^{2}+6x^{1}+62x^{1}-62x^{0}\right)}{\left(x^{2}-2x^{1}-15\right)^{2}}
Qisqartirish.
\frac{3x^{2}-62x^{1}+107x^{0}}{\left(x^{2}-2x^{1}-15\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{3x^{2}-62x+107x^{0}}{\left(x^{2}-2x-15\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{3x^{2}-62x+107\times 1}{\left(x^{2}-2x-15\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{3x^{2}-62x+107}{\left(x^{2}-2x-15\right)^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.