Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-2 va x+1 ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right). \frac{2}{x-2} ni \frac{x+1}{x+1} marotabaga ko'paytirish. \frac{3}{x+1} ni \frac{x-2}{x-2} marotabaga ko'paytirish.
\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} va \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)}
2\left(x+1\right)+3\left(x-2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{5x-4}{\left(x-2\right)\left(x+1\right)}
2x+2+3x-6 kabi iboralarga o‘xshab birlashtiring.
\frac{5x-4}{x^{2}-x-2}
\left(x-2\right)\left(x+1\right) ni kengaytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. x-2 va x+1 ning eng kichik umumiy karralisi \left(x-2\right)\left(x+1\right). \frac{2}{x-2} ni \frac{x+1}{x+1} marotabaga ko'paytirish. \frac{3}{x+1} ni \frac{x-2}{x-2} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} va \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+3x-6}{\left(x-2\right)\left(x+1\right)})
2\left(x+1\right)+3\left(x-2\right) ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{\left(x-2\right)\left(x+1\right)})
2x+2+3x-6 kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}+x-2x-2})
x-2 ifodaning har bir elementini x+1 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x-4}{x^{2}-x-2})
-x ni olish uchun x va -2x ni birlashtirish.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}-4)-\left(5x^{1}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{1-1}-\left(5x^{1}-4\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Qisqartirish.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}-4\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
x^{2}-x^{1}-2 ni 5x^{0} marotabaga ko'paytirish.
\frac{x^{2}\times 5x^{0}-x^{1}\times 5x^{0}-2\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}\left(-1\right)x^{0}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
5x^{1}-4 ni 2x^{1}-x^{0} marotabaga ko'paytirish.
\frac{5x^{2}-5x^{1}-2\times 5x^{0}-\left(5\times 2x^{1+1}+5\left(-1\right)x^{1}-4\times 2x^{1}-4\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{5x^{2}-5x^{1}-10x^{0}-\left(10x^{2}-5x^{1}-8x^{1}+4x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Qisqartirish.
\frac{-5x^{2}+8x^{1}-14x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-5x^{2}+8x-14x^{0}}{\left(x^{2}-x-2\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-5x^{2}+8x-14}{\left(x^{2}-x-2\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.