x uchun yechish
x=1
Grafik
Viktorina
Polynomial
5xshash muammolar:
\frac { 2 } { x } - \frac { 2 x } { x + 1 } = \frac { 2 } { x + 1 }
Baham ko'rish
Klipbordga nusxa olish
\left(x+1\right)\times 2-x\times 2x=x\times 2
x qiymati -1,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+1\right) ga, x,x+1 ning eng kichik karralisiga ko‘paytiring.
2x+2-x\times 2x=x\times 2
x+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x+2-x^{2}\times 2=x\times 2
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x+2-x^{2}\times 2-x\times 2=0
Ikkala tarafdan x\times 2 ni ayirish.
2-x^{2}\times 2=0
0 ni olish uchun 2x va -x\times 2 ni birlashtirish.
-x^{2}\times 2=-2
Ikkala tarafdan 2 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}\times 2=\frac{-2}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}\times 2=2
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-2}{-1} kasrini 2 ga soddalashtirish mumkin.
x^{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=1
1 ni olish uchun 2 ni 2 ga bo‘ling.
x=1 x=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x=1
x qiymati -1 teng bo‘lmaydi.
\left(x+1\right)\times 2-x\times 2x=x\times 2
x qiymati -1,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+1\right) ga, x,x+1 ning eng kichik karralisiga ko‘paytiring.
2x+2-x\times 2x=x\times 2
x+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x+2-x^{2}\times 2=x\times 2
x^{2} hosil qilish uchun x va x ni ko'paytirish.
2x+2-x^{2}\times 2-x\times 2=0
Ikkala tarafdan x\times 2 ni ayirish.
2-x^{2}\times 2=0
0 ni olish uchun 2x va -x\times 2 ni birlashtirish.
2-2x^{2}=0
-2 hosil qilish uchun -1 va 2 ni ko'paytirish.
-2x^{2}+2=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-2\right)\times 2}}{2\left(-2\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -2 ni a, 0 ni b va 2 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-2\right)\times 2}}{2\left(-2\right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{8\times 2}}{2\left(-2\right)}
-4 ni -2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{16}}{2\left(-2\right)}
8 ni 2 marotabaga ko'paytirish.
x=\frac{0±4}{2\left(-2\right)}
16 ning kvadrat ildizini chiqarish.
x=\frac{0±4}{-4}
2 ni -2 marotabaga ko'paytirish.
x=-1
x=\frac{0±4}{-4} tenglamasini yeching, bunda ± musbat. 4 ni -4 ga bo'lish.
x=1
x=\frac{0±4}{-4} tenglamasini yeching, bunda ± manfiy. -4 ni -4 ga bo'lish.
x=-1 x=1
Tenglama yechildi.
x=1
x qiymati -1 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}