x uchun yechish
x=5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x qiymati -2,-1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{2}-3x+2,x^{2}+3x+2,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x+2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x^{2}+3x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
3x ni olish uchun 6x va -3x ni birlashtirish.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
6 olish uchun 4 va 2'ni qo'shing.
3x^{2}+3x+6=4x^{2}-4
x^{2}-1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x+6-4x^{2}=-4
Ikkala tarafdan 4x^{2} ni ayirish.
-x^{2}+3x+6=-4
-x^{2} ni olish uchun 3x^{2} va -4x^{2} ni birlashtirish.
-x^{2}+3x+6+4=0
4 ni ikki tarafga qo’shing.
-x^{2}+3x+10=0
10 olish uchun 6 va 4'ni qo'shing.
a+b=3 ab=-10=-10
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon -x^{2}+ax+bx+10 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,10 -2,5
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b musbat boʻlganda, musbat sonda manfiyga nisbatdan kattaroq mutlaq qiymat bor. -10-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1+10=9 -2+5=3
Har bir juftlik yigʻindisini hisoblang.
a=5 b=-2
Yechim – 3 yigʻindisini beruvchi juftlik.
\left(-x^{2}+5x\right)+\left(-2x+10\right)
-x^{2}+3x+10 ni \left(-x^{2}+5x\right)+\left(-2x+10\right) sifatida qaytadan yozish.
-x\left(x-5\right)-2\left(x-5\right)
Birinchi guruhda -x ni va ikkinchi guruhda -2 ni faktordan chiqaring.
\left(x-5\right)\left(-x-2\right)
Distributiv funktsiyasidan foydalangan holda x-5 umumiy terminini chiqaring.
x=5 x=-2
Tenglamani yechish uchun x-5=0 va -x-2=0 ni yeching.
x=5
x qiymati -2 teng bo‘lmaydi.
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x qiymati -2,-1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{2}-3x+2,x^{2}+3x+2,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x+2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x^{2}+3x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
3x ni olish uchun 6x va -3x ni birlashtirish.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
6 olish uchun 4 va 2'ni qo'shing.
3x^{2}+3x+6=4x^{2}-4
x^{2}-1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x+6-4x^{2}=-4
Ikkala tarafdan 4x^{2} ni ayirish.
-x^{2}+3x+6=-4
-x^{2} ni olish uchun 3x^{2} va -4x^{2} ni birlashtirish.
-x^{2}+3x+6+4=0
4 ni ikki tarafga qo’shing.
-x^{2}+3x+10=0
10 olish uchun 6 va 4'ni qo'shing.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va 10 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-1\right)\times 10}}{2\left(-1\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+4\times 10}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+40}}{2\left(-1\right)}
4 ni 10 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{49}}{2\left(-1\right)}
9 ni 40 ga qo'shish.
x=\frac{-3±7}{2\left(-1\right)}
49 ning kvadrat ildizini chiqarish.
x=\frac{-3±7}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{4}{-2}
x=\frac{-3±7}{-2} tenglamasini yeching, bunda ± musbat. -3 ni 7 ga qo'shish.
x=-2
4 ni -2 ga bo'lish.
x=-\frac{10}{-2}
x=\frac{-3±7}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan 7 ni ayirish.
x=5
-10 ni -2 ga bo'lish.
x=-2 x=5
Tenglama yechildi.
x=5
x qiymati -2 teng bo‘lmaydi.
\left(x+2\right)\left(x+1\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x qiymati -2,-1,1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right) ga, x^{2}-3x+2,x^{2}+3x+2,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
\left(x^{2}+3x+2\right)\times 2+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x+2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
2x^{2}+6x+4+\left(x-2\right)\left(x-1\right)=\left(x^{2}-1\right)\times 4
x^{2}+3x+2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+6x+4+x^{2}-3x+2=\left(x^{2}-1\right)\times 4
x-2 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
3x^{2}+6x+4-3x+2=\left(x^{2}-1\right)\times 4
3x^{2} ni olish uchun 2x^{2} va x^{2} ni birlashtirish.
3x^{2}+3x+4+2=\left(x^{2}-1\right)\times 4
3x ni olish uchun 6x va -3x ni birlashtirish.
3x^{2}+3x+6=\left(x^{2}-1\right)\times 4
6 olish uchun 4 va 2'ni qo'shing.
3x^{2}+3x+6=4x^{2}-4
x^{2}-1 ga 4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x^{2}+3x+6-4x^{2}=-4
Ikkala tarafdan 4x^{2} ni ayirish.
-x^{2}+3x+6=-4
-x^{2} ni olish uchun 3x^{2} va -4x^{2} ni birlashtirish.
-x^{2}+3x=-4-6
Ikkala tarafdan 6 ni ayirish.
-x^{2}+3x=-10
-10 olish uchun -4 dan 6 ni ayirish.
\frac{-x^{2}+3x}{-1}=-\frac{10}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{3}{-1}x=-\frac{10}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{10}{-1}
3 ni -1 ga bo'lish.
x^{2}-3x=10
-10 ni -1 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=10+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=10+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{49}{4}
10 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{7}{2} x-\frac{3}{2}=-\frac{7}{2}
Qisqartirish.
x=5 x=-2
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
x=5
x qiymati -2 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}