Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
x-1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-2+1=\left(x-1\right)\left(x+1\right)
3x ni olish uchun 2x va x ni birlashtirish.
3x-1=\left(x-1\right)\left(x+1\right)
-1 olish uchun -2 va 1'ni qo'shing.
3x-1=x^{2}-1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
3x-1-x^{2}=-1
Ikkala tarafdan x^{2} ni ayirish.
3x-1-x^{2}+1=0
1 ni ikki tarafga qo’shing.
3x-x^{2}=0
0 olish uchun -1 va 1'ni qo'shing.
-x^{2}+3x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va 0 ni c bilan almashtiring.
x=\frac{-3±3}{2\left(-1\right)}
3^{2} ning kvadrat ildizini chiqarish.
x=\frac{-3±3}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{0}{-2}
x=\frac{-3±3}{-2} tenglamasini yeching, bunda ± musbat. -3 ni 3 ga qo'shish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{6}{-2}
x=\frac{-3±3}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan 3 ni ayirish.
x=3
-6 ni -2 ga bo'lish.
x=0 x=3
Tenglama yechildi.
\left(x-1\right)\times 2+x+1=\left(x-1\right)\left(x+1\right)
x qiymati -1,1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-1\right)\left(x+1\right) ga, x+1,x-1 ning eng kichik karralisiga ko‘paytiring.
2x-2+x+1=\left(x-1\right)\left(x+1\right)
x-1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
3x-2+1=\left(x-1\right)\left(x+1\right)
3x ni olish uchun 2x va x ni birlashtirish.
3x-1=\left(x-1\right)\left(x+1\right)
-1 olish uchun -2 va 1'ni qo'shing.
3x-1=x^{2}-1
Hisoblang: \left(x-1\right)\left(x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
3x-1-x^{2}=-1
Ikkala tarafdan x^{2} ni ayirish.
3x-x^{2}=-1+1
1 ni ikki tarafga qo’shing.
3x-x^{2}=0
0 olish uchun -1 va 1'ni qo'shing.
-x^{2}+3x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+3x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{3}{-1}x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{0}{-1}
3 ni -1 ga bo'lish.
x^{2}-3x=0
0 ni -1 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
x=3 x=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.